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TRANSLATOR’S PREFACE O\

The translation of this volume follows the German editign)éxcept for
Articles 3 and 6, which dea] with the slide rule and calculating machines.
In these cases, the material has been revised or entirelthwﬁtten, in order
to deseribe the equivalent instruments of American degigh,

The diagrams in this edition are, for the most pard, reprints of those of
the original volume, gand may therefore contain\éome German symbols,
e.g., the use of the comma to denote the decig@;l’point.

The translator wishes to thank his wife, Elten F. Beyer, for her assist-
ance in the preparation of the manuscrjpf: for publication.

N/

Y Roserr T. BevER
Providence, February, 1947, N\
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FOREWORD

The following volume describes numerical, graphical and s few in-
strumental methods of practical analysis, Even if the numerical method},
in which the approximation can be carried as far a8 desired, are the 08t
important, I still believe it necessary to describe the graphical foethods,
gince I am of the opinion (in opposition to the views of oqh&r\authom)
that they are of practical importance. Certainly, their accurgey is often not
very great. Yet in many cases, the approximation achitved by them is
sufficient, and in other cases, the data obtained from the graphical method
can be a useful starting point for numerical methods. In any case, many
will prefer the graphieal methods for their clmity, gnd their more con-
venient manipulation, in contrast to numerical Methods which frequently
require so much eomputational work, O cbume, if it is a question of
greater accuracy, numerical methods musb b employed.

I have endeavored so to arrange Jthe material that each of the six
chapters is intelligible by itself, if one vecasionally refers back to the earlier
material, particularly to the chaptes on interpolation. To keep the volume
from being too large, I have selegted from the extensive material available
only what seemed importafitto me. I have regretfolly omitted many
topics, e.g., everything ‘wﬁch desls with methods of mathematical sta-
tistics. Nevertheless, (¥ hope that even the accomplished worker in the
field wifl find somet.}hg new here and there. Brevity is avoided in the
presentation, in order to make the volume more intelligible to the be-
ginner, and theMigterial is illustrated by numerous examples,

In conclusion; I wish to express my gratitude to all those who have
assisted\1e) In the preparation of this book. Above all, T must thank
Prof.’RkRothe for many suggestions which I have received from him in

the ‘eduise in applied mathematics at the Institute for Applied Mathe-
,.Jiatics at the Berlin Technische Hochschule, courses in which T was

permitted to cellaborate with him for several years. A series of examples
stems from this work, as well as the observations of Art. 17 relating to
the theory of the planimeter. Finally, Messrs. W. Raabe and H. J. Luckert
have assisted me in the examination of the proofs; in particular the latter
took the trouble of working out most of the examples.

\
\

Fr. A. WiLLERS.
Charlotienburg, February, 1928,
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CHAPTER ONE

NUMERICAL CALCULATION AND ITS AIDS

1. Calculations with Approximate Values.

1. In the application of mathematics to practical problems, .wé are
usually degling with inaccurate dafe. In the first place, all measuretments
entering into the ealeulation involve errors of some magnitude’\Ih addi-
tion, many of the numerical valuea sed, particularly the irditibnal num-
bers, such as certain roots, ¢, =, ete., are rounded off, The absolute errors
of such quantities are easily estimated. When the rounding off s done
correctly, these errors amount at most to one half‘“ﬁ\nit’ in the last place
reteined. Therefore, when numbers are roundedgff, it makes a difference
whether or not zeros are inserted after the Iast digit of a decimal fraction.
For example, the number 0.76300 is stated Wx};h 8 hundred times greater
aceuracy than 0.763. In the first case thé\itexactness amounts at most
to 5 X 107% but in the second it can h@aslarge as 5 X 107%. We are often
dependent on an estimate of the inapc;liracy involved in the measurements.
Nevertheless, the limits of errorsaré uwsually known for measurements
which are carefully performed. ~ 3%

The worth of an approximite value or of a measurement cannot be
judged by the size of therabsolute error, but only by the relative or per-
centage error. If a’ is found' by measurement for a quantity the true value
of which it a, then t{é\ébs’ozm erroris

{1} A=a' ~—a.

\ X
The negative iyuantity — A, which must be added to the measured value
to get theltrue value, is known as the correction. Relative error is written

A\

’." _|e —ua Al | A
52) &= a T la a’ |’
\\ ) while percentage error ig given by
® e=1ooa=100‘$’.

Both of these numbers are dimensionless.

Ezxample: The major axis of the earth was found by Bessel (1837)
to be & = 6,377,397 meters, and by Helmert, ¢ = 6,378,200 mefers,

1



2 PRACTICAL ANALYSIS

If Helmert’s value is taken as the correct one, keeping in mind that
the first result is expressed in legal meters’,* while the second is ex-
pressed in international meters, the absolute error of Bessel’s result
is reafly considerable, namely | A] > 800 m; en the other hand, the
relative crror § = | A[/a = 0.000126, and also the percentage error
e = 0.0126%, are actually small. The results are therefore relatively
precise, : o

On the other hand, Ladenburg (1926)° found as the best value for
Planck’s constant, » = (6.55 == 0.01) X 107" erg sec., while Plahck
(1913) gave the value 6.41 X 107" erg sec. Then the absoluté\erfor

lA] = 14 X 107" is certainly extremely small, but the felative
error § = (.02, or the percentage error ¢ = 29, arg{considerable
when ecompared to the example above. &0

/N

2. The errov of the result of a ealeulation whichJgVa consequence of
the inaccuracy of the data employed is known ass@f error of dela. Since
the caleulation of inaceurate data is carried 0\1{ enly approximately, an
additional inaceuracy enters into the restlb, jthe error of calculation.
Naturally this error must not be greater tham'the error of data, since full
use would not then have been made 0f~ﬂjfe accuraey of the data. On the
ather hand, if the caleulation crror j8mot appreciably smaller than the
error of data, then the computer onjj.xﬁakes unneeessary work for himself,
and implies a non-existent accgracy in the result. As a rule, the error of
caleulation should amount tolabout one-tenth of the error of data. In
meachine caleulations, howewer, more precise computations can be made
without extra work, and result may then be rounded off to a precision
corresponding to the data.

The magnitude ‘af\the error of caleulation allowed determines the choice
of the method .ogcallcula,tion te be used. This problem will be discussed
later. Here we\®onsider two questions. First, for given errorms of data,
what €5 the.%a:rimum tnaccuracy o be expecled in the result? Second, what
precision "aé:mst the data have in order that the error of the result does not
excee;d&a«previously determined magnitude? Usually this second question
mist be decided separately for each case. Here we shall be concerned
ehiefly with the first question, and we shall determine an upper limit for
the errors which may possibly be introduced. It is not diffieult in individual
examples to give the mean error as esleulated by the method of least
squares.

'3. Suppose that we have a formula which is a funetion of three quantities
with real values z, y, 2, the absolute errors of which are Az, Ay, Az, Thus

*Notes and references to the litersture are collected at the end of each gsection.



CALCULATIONS WITH APPROXIMATE VALUES 3

measurement fumishes the values x + Ax, y + Ay, 2z + 4z The absolute
error of the resulf is then

Ay = flz + Az, y + Ay, 2 + A2) — f(z,¥,2)
or, if f(z, ¥, £) has continuous derivatives, . _
A= f& ,m, B)ds F 6, me, fAY + fG ;1'.'3 ) Da)dz, o O\

where the £ --- §, are certain values in the intervals z to z - M:‘y to
# + Ay, z to 2 + Az These values are those for which the dehva.twes
each have their maximum value for the inferval consndered Then, if the
absolute values of both the derivatives and the errors aJ‘e uséd (so that
the individual terms do not cancel each other), we obf@.m the maximum
absolute error of the caleulated expression:

® |Au] S | foilaz]+ 16018y 7]z,
The extension of this formula to n quanigilaiés’ follows immediately.

Ezxample: To obtain the radiisidof curvature of a plano-convex
spherical lens, we measure t.l;gjdiaineter d and the sapitta s Because
the lens is not perfectly spherical, d can be determined only within
1 mm, while & ean be measured to a precision of 0.1 mm,

Simple considerations give the radius of eurvature as

s \J

< 2
ST

N

\Y )
The ma:gi\m}rm absolute error is therefore

) — & 1
AN A = f—s‘[Ad|+| 85 +§‘1Asl
\’ t 2
O =‘%|X1+|~—-8%§+%\><0.1mm.

H s is approximately 3.9 mm., and 4 is 126 mm., then
7= 509 + 2 mm. = §11 mm,,

|ar| =835 X 14 138.5 X 0.1 = 22.3 mm,

-Therefore r = 51 &+ 2 em.?
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4. With certain elementary functions, simple laws can be given for the
relative error. From the formula for the absolute error, the mazimum

relative error is found to be

_lal_|&]. A FA .
For the case of a produet of three factors, this gives "\
— ﬁ_ . ..QE . v ﬂ‘_ 0\:\
el vl R Rl e R R il o IAz{.\ :
®) !
_ ez | jg - N
=13 -!-Iy + zl 6=+6v+5iv\'\

The mazimum relative error of a product is then egual to the sum of the
relative errors of the individual faclors. :.\\f
Exzample: Two sides of & triangle arg méaéﬁred to be 4.32 + 0.02
em. and 567 = 0.02 ¢m., and the incilu'ded angle is 45 + 1° The
relative error of the area is then o

2 I\
5= a3 + B 00t 45(0.0044) = 0.0125.

1t should be observegl&fhat the crror of the angular measurement
is given in radians. The maximum crror in the area is then about 19%.
As we shall see la,tﬁg\the accuracy of a slide rule would have been
sufficient for this{ éa[eulation.

A simple error{law also exists for the quotient of two numbers. Tt is

O 1+ —a/y’
AV z/;” Azl + *—Ef/’; ’lAy]
6 3
m:;\.’ _ | Az Ay
\\} = = +‘? =6¢+5u-

Therefore the mazimum relative error of @ quotient is equal fo the sum of
the relative errors of the numerafor and denominator.

Ezample: This example* llustrates how such considerations can
occasionally give an indication as to the best possible method for
carrying out the measurements. The efficiency 4 of a transformer is
first determined directly by the ratio of the power output « to the
power input 2, and second by the ratio of the power output to the
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sum of the power output and the power loss ». The measurements of
the input and output power may be carried out accurately to within
1% while the power loss may be determined within 209. In this
case ¢ would have a value of sbout 0.95.
By the first method, 87 = & 4 éa = 0.01 4 0.01 = 0.02, i.e., 2%.
By the second, n = a/{a + ),

_ v a ety N\
""‘((a+v)‘ Aat | Gy ) ' .
A,
_v_ (w é_v-) O
a+v a Y (~.:’~“
I (36 + &) = (0.05X0.21) = 0 0105’\; e, 1%
a-+ul . ' 3 by L%y L0

Therefore, in spite of the far greater ma.ccura\sy in the determination
of #, the second method leads to a more a.c}urate result.

Simple rules, similar to those for the re]atws error of & product or of
& quotient, can easily be derived for refa’.tlve errors of powers and roots.
The relative error of an nth power ge. equal fo n times the relative ervor of
the base number, while the relatwe‘mor of an nth root is 1/nth of the relative
error of the radicand. L

5. The results of a €alcilation will be especially inaceurate whenever
we deal with the diffgrence of fwo nearly equal quantities which are known
only approzimatelysiFe find the relative error in this casc, the sum of the
absolute errors, thken without regard to sign, is divided by the difference
of the two givéﬁ\ﬁumbers

Ex%zple For the determination of the logarithmic decrement, we
use the formuta
N
o\ 4 _loga, — loga,
. \ 3 X P
where a, is the magnitude of the swing between the pth and the
(p -+ 1)st maxima, and ¢, that between the gth and the (g + 1)st
maxima. If readings are made with mirror and scale, then the scale
readings ab various deflections might be as follows:
3rd and 4th maxima, 341.4 and 662.3; a;, = 320.9,
6th and 7th maxima, 625.6 and 415.6; a; = 210.0.
If the accuracy of each reading is within 0.1, then a; = 3209 &
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0.2, @z = 210.0 £ 0.2 and the relative errors are dax = 0.00062,
daq = 0.00095. Therefore

= %[log as(l £ das) — log ag(l &= 3a)]

=1 {leg a; — log as) + 3 (5.‘:;3 + dag)

w
/

= 0.0614 £ 0.00052. ’\:\.
The error then amounts to almost 195, ‘ \\ .

6. If the final result is dependent on only one of several \quantities to

be measured, then the relative error will be M;\“
| @) |
| Az |. N
Z 2= e o

The result becomes more accurate as the err\ Az of the measurement
becomes smaller. But the aceuracy of the reerlt ig also greater if the ratio
P&}/ f (&) | becomes smaller. This sometzmes gives an indication of how
measurements ought to be carried out ifrpractice. If | f’(x) ff(z) | is to be
made a minimum, then the derlvatn«e of this expression, with respect to
#, is equated to zero. The resulta?nt value of z is then computed.

Example: In the mea.st{rement of resistance by the bridge method,
let & be the standard tesistance, I the length of the wire along which -
the bridge contagt BS& oved, & the length of the wire from one end
up to the contact yoint (when zero current iz measured by the gal-
vanometcl} Twhen the unknown resistance is

xt\" z
\\ flz) =R p—

From. this it follows that

~O e ! @
Q M@ =Rggs P -t

If the derivative of this expression is equated to zero, then
d ( I ’(x}) 2z — | . {
—_ A [ I — = — —
e A\ (x) 2 — 5)° 0,1le.,z 2

An error of messurement therefore has the least effect on the -
result if the contact of the bridge is moved in the vicinity of the
middle of the wire.
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7. The second question mentioned in the beginning, namely, how pre-
cise must the data be in order that the inaccuracy of the resull does not
exceed an assigned value, will be illustrated here only by a single example,

.Example: The area of a circle is to be determined to within 0,197,
How precisely must the radius; r = 30.5 cm. be measured, and how
many places of « should be employed?

From I = =" we get

0_001=1A_I = | 247
I r

A'!r N
+|?‘ =2+ ()
NS ©
If # = 3.1 is used, the relative error of = is already, 001, This
aceuracy is cerfainly insufficient. For » = 3.14, ér =%0.0005. Then
we must have

R&Y
| Ar | £ 0.00025r = 0.0076'cmy

This accuracy iz rather difficult to obtajﬁ,\\.since one can scarcely
measure such lengths more accurately {han within one-tenth of a
millimeter without speecial methods. Ifvanother place is taken for
7, Le.,, 3.142, then for &z = 0.00013 2nd | Ar| =< 0.00044r = 0.013
em. This accuracy of measupen}enﬁ ‘ean be obtained. If more places
of 7 are introduced in the ‘ca:lci.fiat.ion, then the value of | Ar| in-
ereases to at most 0.015 cmy,*which is not appreciably larger than
the previcus value. Theféfore r ought to be measured within ahout
0.1 mm., and at least-iour places should be used for = If additional
measurements entgiinto the ealeulation, this method becomes much
" more complicated. We must then always check back to find with
which of the medsurements the accuracy can most easily be improved.

AX
0\’.. 7 NOTES
1. Tu,ws::\’aéa’s ~nors: There is a slight difference in length betwecr} the inter-
national ¥/ which is maintained at Paris, and the meter actually preseribed by law

n varin't.fs uropean countries. The differcnee in the measurement, of the majot axis of
the eargl amounts io about two meters.
Py Q?‘Hamib‘uch der Physik, vel. 23 {Berlin, 1926). . . o ’
\ 3. Furtber examples are found in R. Rothe, Hokere Mothematih 1 (Leipeig, 1926),
B. 108; C. Cranz, Lefwbuch der Ballistik I (Berlin, 1925}, Art. 44.
4. Brion, Leitfaden zum elektrotechnischen Prakiikum (Berlin, 1910}, p. 4

2. Representation of Functions, especially Function Scales.
1. The graphical representation of a functional relationship can have
two purposes. Either it should give « clear picture of 't.hc funetional fiea
pendence, or it should serve as the basis for some kind of caleulation
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operation to be carried out graphically with the values of the funetion.
In the first case, the two dimensional representation in the form of a
curve is generally chosen.

For each axis, a particular seale must be ehosen, so that the representa-
tion for the preseribed range of both variables can be fitted on the paper
at one’s disposal. The seales should alse be so chosen that the page is
completely utilized. For example, if the independent variable is to be,
plotted for values from «, to z. , and a surface of « mm. by 8 mm. is avail
able on the paper, then the upper limits for the units along the abgs(iihs\a,
and ordinate are R\

(1) E, = T mm, E, = £ mm. ™
Xy — ¥ ¥z — ¥ A

%7

L
Of course these values will not in general be taken as tliég\units. Instead,
for eonvenience in plotting, a round number, somewhat smaller than the
value determined by (1), will be used. e \ud

Ezample: The values y = (»/R)} f{)r‘tﬁe\ K series of the X-ray
spectrum, where » is the wave numbér Min reciprocal centimeters,
and B = 109,737 per cm. is the Rydﬁerg constant, are to be repre-
sented as a function of the aton;ié},h‘umbers from element 11 {Na)
to element 74 (W) on a sheet @f 40 X 60 em. For Na, y = 8.757,
for W, y = 66.095. In general the values are aceurate to two deeimal
places. If we plot the ath‘ic numbers from 11 t0 74 on the shorter -

side, we have ag the unig

N3
..”E‘ = %mm. = 6.35 mm,.

\ </
or 6 mm.’;an rounded off, and as the unit of the ordinate

NV
9 . /00
":\\ E, = 57 338 = 10.47 mm. or 10 mm.

To :?ﬁ’uain a particularly accurate plotting of the coordinate values
a gpeeially made coordinate paper may be used. Points may be plotted
on 0r' read off this papor to within 0.02 mm,!

2. The scale should be chosen as large as possible, so that it permits a
reading with the same aceursey with which the measurements are made.
But in general the accuracy of reading should not be much greater than the
aceuracy of measurement, Otherwise the ageuracy obtained by the
mfza:surements is very likely misjudged. If the graph is made on good
millimeter paper, it can be assumed that readings can be made aceurately
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within 0.1 mm. The inaceuracy of a reading would then be s = 0.05 mm.
The maximum error of measurement must then correspond to this in-
accuracy of reading. In this case then, we obtain as the unit of length,
or scale modulus:

@) E=2mm =

If this is greater than the unit previously determmed Wwe can break up
the scale and draw the curve in fwo parts. Ko b

In the example above, we do not need to consider the abscissa
values, since only integers are involved. If we assumegthat the values
of (3/R)} are accurate to two decimals, ie., that the’arror of measure-
ment is Ay = 0.005, then the value for the Scalqmoﬂlﬂu% is

£, = poos - = WWww.,

7

R

which is the same as before. AN/

3. For graphical calculations, a qﬁé—“dimensional representation of the
functional relation in the form of-alfunctional scale is chosen. Such a scale
can be derived from the graph\of the funection, as shown in Fig. 2. In
this figure, a8 double seale g% drawn, consisting of one scale with equal
intervals, ie., a uniformeSedle, and one which is non-uniform. We can
find the values on Gnhiform scale which are the function values corre-
sponding to the afy ents which appear on the other scale. But since
the functional velies are not important in the application of this scale,
the uniform scah is usually omitted. The distance of a division stroke,
denoted by/#yfrom the origin on the remaining scale is X,-f(z), where
E, is { "Eale modulus of the representation. The equation which was
given fi\Ponnection with the choice of the ordinate modulus also holds
for_the ‘determination of this modulus. If there are available tables with
1 éuf:ﬁclcnt number of values of the function f(z), the drawing of the
Burve can be omitted. Then E,-f(z) can be plotted directly, as is the case
for the logarithmic seale. If the individual division marks which would
be obtained by direct plotting lie too far apart, it is advisable to draw the
curve for the purpose of interpelating the intermediate values. A more
finely divided scale is then obtained.

4, If the argument z is given an increment , then different distances
between strokes on the two sides of the double scale correspond to the
same inerement h. But sinee these distances must be neither too large nor
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too small, equal increments % eannot always be maintained for the entire
length of the seale. If a distance A between strokes is given, then A4, the
unit increment of the argument, must be so choscn at the point z, that

A = Eff(w + B — f@)] = B, — F®-h,

where £ is a value between z; and =, + k. But since we are considering a
small interval and are using only approximate values, we can set £ = &
Therefore, at the point x, we have

X ¢ \:}
@ " Fray O
Naturally the value of & used is not the efact number whiél; is obtained
from this equation, but is the nearest of the values RS
1 2 i) 10 20

N

@ 107107 100 100 20
The length of the inerement is therefore repcp,tbd:'Only in the jump from
two to five is this duplication not kept clogelys within the decimal system.

To determine the inerement of the argumént and the intervals in which
the argument is to be changed by suchlincrements, we proceed as follows.
First, we choose an upper and a dewer limit for the distance between
strokes. These may be A, = 1 mmq,*and A, — 0.5 mm., whick are values .
such as are chosen on the scales of a slide rule. If j/(z) decreases with
increasing x, then we begin-with the larger length A, , and choose as the
increment of the argumen\t'\ihé value of the sequence (4) which lies nearest
fo the value \
A\ By — M

N B ()
This increment of the argument is to be used as far as some integral value
of x whi-;b%&% in the neighborhood of z, . This number is caleulated from
the equation ’
Q)

si‘}f B f" @)y = ) .
T

Y
€ next increment of the mrgument in the sequence, kg , is used from
this point on. Then an argument value z; is determined, up to which the
increment k. is used, efe. If f(x) incresses with inereasing x, then we
must determine ky by use of the smaBer interval length A, , and z, with
the larger, A, .

E:camp{e: The increment of the arguinent is to be found for the upper
logarithmic scale on the slide of the ordinary slide rule. For this,
E, = 125 mm., and also
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J(z) = log z, F(x) - ]0 e

Since f'(x} decreases with increasing z, the initial argument increment
is then

Tk

h = 125(0.434) — 0018 = 0.02.
Thiz value is used as far as .
_ (0.434)(125)(0.02) B A
Y 217 = \“\
From z; = 2 on, the next value of the sequence, h. = O 0‘.5 is em-
ployed, as far as <\,
_ (0.439)(125)(0.05) _ . 43, \%
0.5 K,

e, to x; = 5. From there on, b; = 0.1 is u&{ed up to

5, = 434)3125}(0 1) ~10~9

i.e., to the end of the first part of t}ie upper scale. Further investiga~
tion is not necessary since the! seale from 1 to 10 is simply repeated
on the seecond half of this seale.”

" : {"\{
5. The equation \\
P A
®) O =
\<& E, f'(z)

also permits us/ fblgive the error involved in the reading of f(x). If seales
are used ich have been drawn sccurately, with distances between
successiveds kes of about 1 1em., then 0.1 mm. can still be estimated.
The ingteuracy in reading will then amount to abont Al = 0.05 mm.
FI“g 1} The inaceuracy of the argument z,

V 005
E,-f'(2)
a9 1 12 13
Fie. 1

is therefore inversely proportional to the scale modulus which is used,
and to the derivative of the function represented.
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With logarithmic scales,
Ap = 0.05z
* = E, 0439
In this case, therefore, the relative error,

Ar| _ 005
z |~ E,0.434)

5. = Q.
is constant. This is an outstanding advantage of the logarithm.ic\s?aie,
and is enough, aside from other advantages, to justify its freqtil‘ent use,
For the upper seale of the slide rule, we then have

_ 005 s
* T (125)0.434) T

Y

8 0.001 (0.1%). L ¢
For the lower scale, which is drawn with a scale ghddualus twice that of
the upper, E, = 250 mm., the relative error is ha;}?\aé large:

5. = 0.0005 (0.05%))

Of course, this holds only for a Well»eggeéutéd scale, and for very careful
reading. In rapid reading, as is usganlly the case with the sfide rule, the
probably error must be taken to be:’q:t'least twice a8 great.

N\ 6. Function scales can be used on hoth
7‘{"%‘ axes to replace the ordinary uniform scales
' inatwo-dimensional representation of the
N\ functional relationship betweer two vari-
D ables. This is done for the simplification of
the graph as well as for other reasons. The
functions £(z) and 5(y) are plotted as co-
ordinates, instead of the variables z, ¥
i themselves. In this way, for example,
i cerfain relationships can be expreszed as a
straight-line graph, by the use of suitable
scales. The scales can also be so chosen

X
7

S T TR T TR T TR thatthegl‘aphforapm‘ticularrange of the
7 2 3% 5 6 7 & vyariables will be spread out, thus achiev-
Fia. 2 ing a greater accuracy of representation in

this region. Power scales and projection
scales are partieularly useful for such purposes. Use of logarithmic scales
enables us fo obtain a constant relative aceuracy over the entire interval, as
was shown in the preceding number., Special papers are available commer-
cially for many of these scales (logarithmic, semilogarithmic paper).?



REPRESENTATION OF FUNCITONS——FUNCTION SCALES 13

Ezample: A generator runs down. Te asceriain the temperature at
the time when the current generated becomes zero, the following
temperatures 7, in degrees centigrade are determined as a function
of the fime { by resistance measurements of the ¢oil windings:

¢ 2 5 7 10 13 17
T 84.8 82.2 80.7 78.8 77.0 746 ¢ N
T-14 70.8 68.2 66.7 64.8 62.0 506 N
. A

. N7

The coolixig to the room temperature of 14° abeys the Ig,w"r'g

T — 14 = Ae** ..,,'\"

or

log (7" — 14) = log 4 -+ qd@g‘e.

Semi-logarithmic paper should then be use?‘, ‘and the values of 7' —
14 should be plotted on the logarit.h.minlgéale. The value ¢ is plotted
on the uniform seale. In the actualgase the points lie very neatly

3

'ﬁ\'b’ﬁ'llklj’lyﬂ!lll!{‘#lllwt
on ﬂysb}afght line (Fig. 3). How the.oest possible straight line is found
wilkhe described in Art. 26. The straight line used here leads to the
(équation
@ Mt —0.00461¢
\/ T = 14 + 72.07¢"°

so that the temperature was 86.1° whea the generator was shut off.

NOTES
L. Willers, Mothematische Insty te {Berlin, 1926), p. 51.
2, On German slide rules, the sccond half of the rule is numbered from 10 to 100

See the note in Ast. 3. . '
3. For example, hints for the use of such papers are given m Piruni, (fraphische

Darstellung in Wissenschaft und Technik {Berlin, 1922).
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3. The Slide Rule!

1. The representation of functions by seales is used on all so-cslled
continuous caleulating devices, of which the slide rule is the best known.
If two functions, f(u) and g(w), are represented as scales with the same
scale modulus, and if these scales are set next to one an-
other, as shown in Fig, 4, then the fundamenial equation of
the slide rule may be read from this figure: ~N

(1 Fle) = ) + glws). \

Calculations which ean be performed with a slide .@l\e“;an
T be derived from this equation. The ordinary slide rule
3~ gy  possesses a number of legarithmic scales. Ongthe ‘movable
portion, or slide, there are usually three suGh Seales, while
there are two logarithmic scales on the, ﬁfbc)r or fixed por-
tion of the rule. These five scales areNégtered 4, B, €, €7 .
and D (Fig. 5 and Fig. 6). The seales W and B lie opposite
7 each other on the upper parts pffthe stock and slide re-
Ed spectively. These seales are 0£’t-h\ form L-log A, where A
Fra. 4 is the valuc of the function{ and X, the scale modulus, is
12.5 em. The seale is thed\repeated on the second half of
the rule. The scales ¢ and D lie oppnsii;@iéach other ou the lower portion of
the rule. These scales are of the forzn'9% log ¢ and 2L -log D with a seale
rodulus of 25 ¢m. The C7 or inverted C scale is located in the middle of the
slide. It has the same modulus a& the ¢ scale, but begins at the right side of
the slide, rather than at thgilé%t

; Lelog A —— Sy
N\ ]
;——.L.-.Iog-Bo—*-:
M £ % 1
I 2 a Lt‘)s?n: 12 3 ase7ra80: |A
. 1 ,:TIIJHII Illl I|“!||'!||i B
-—L'IogAlx::q: 2 2 <lzevas i1 ALY
N 1
A TN P 2] 3 a 5 & 7T 8 9 1
2L=°3®'| i ] 1 TR S A Py
3 T T T I I I Tp
' =\ i2 3 4 5 & 1 8 @t
] t
']'\\' ,," }-_21-. iog Co 1
N=—2L-log D, :
C b6, 5

The slide also usvally has two trigonometric scales: S, a log sine scale
of the form 2L -+ 2L-log sin ¢ which runs from sin ¢ = 01ltosing =1,
i.e., from ¢ = 5°44" 10 90°%; and T, a log tangent scale of the form 2L +
2L-tan . This scale runs from tan ¢ = 0.1 to tan ¢ = 1, Le., from ¢ =
§°44" to ¢ = 45° The stock also has the seale L, a uniform seale of the
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form 2L-¢, where £ varies from 0 to 1. This scale is used to find denary,
logarithms,

Btill other scales are found on some slide rules. For example, s scale
of the form 2/3L-log u, which is repeated three times, is often included
for the caleulation of cube roots.

For the ealeulation of arbitra.ry powers and roots, a scale for log log »
is frequenﬂy included. In practdce, this seale is usually divided into three™\

B scaleLL3 2L-log In v. O\

b. seale LL 2: 2L-log 10 In v, 5D ¢

¢. seale LL 1: 2L-log 100 In ». A\ hy
These scales are all set on the stock of the slide rule. N\ 3

i

)

L

3

L]

1

:931;:4:

[ I S I A D |
V¢

[}

o

J

1

T T T T
2 E] 4 EI

~

n
T
&
he

I N S

=221 Tog Cooe
—2L l0g Dy 4 !
' 4 FIG. i}

2. All the scales on alsli i & rule can be moved relative o each other. This
is performed either dlre:g;g, by the motion of the slide with respect to
the stoek, or mdxreetly, by use of the hairline on the glass runner or in-
dicator whmh caf b6 moved along the rule. The calculations which can
be eamed ou‘:. iﬁ\tl'us way are developed from the general slide rule equa-
tion.?

If we cmﬁlder the 4 and D scales simultaneously, then, since each has
the Sa{ne ‘tarting point, f(u;) = 0, and equation (1) becomes

/N

‘{2)3 ) /i (o} = g (e}
Ldog A = 2L-log D = L'log D*. From this we have
®) ' A=DorD = AL

Therefore, the number on the upper scale which lies directly above a
number on jthe D scale is the square of the latter number. Conversely,
the sguare roof of the number on the A seale can be read off on the D
seale. It can easily be seen that the numbers with an odd number of digits
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in front of the decimal are set on the first half of the 4 scale, and those
with an even number of digits are set on the second half.

3. We now consider the relations between scales A and B, as shown in
Fig. 5. From the ficure we have

{4} L-log Ay = L-log 4, + L-log B,

. ™\
where 4, and B, are the scale readings of any two adjacent points on'the
scales. In general, K¢ :\

4o _ 4 O
(5) Al - Bn - B- % ’

If we regard the edge between the stock and the slide aé’ fractional bar,
then all the fractions formed by adjacent pairs of numbe}s have the same
value (a possible eheck on the accuracy of the scal@)Vf a fraction Ao/B,
is to be multiplied by a rather large sequence of humbers B, , B, , ---
B, , then the division stroke of the slide, de o’te}l by B, , is placed under
the point 4, of the 4 scale. The values a&then read on the A scale,
over the marks B, , By, -+ B, . Since@the 4 and B scales contain two
1-10 intervals, the values 4, , 4, , a3 4, lie opposite the values B, .
B, , -+« B, in either interval, Of Gottrse it must be kept in mind that
each number is taken as a sequenee®of digits, without regard to the posi-
tion of the decimal point. The deeimal must be supplied by some estima-
tion methed. In this way, t{‘e entire set 4, can be read off from a single
setting of the slide. O

Ezample: In sg-\%n\ place logarithm tables, we have
2> log sin 42°36' = 0.8305001

’\::.‘ log sin 42°35’ = 9,8308717
\O” Difference - = 0.0001374.

~N
N ';’i‘he following values are to be calculated;
(0 logsin42°35 2.5” = 9.8303717 4 0.0000057 =~ 9.8303774

\ ) 18,77 = + 0.0000420 = 0.8304146
27.3" = -+ 0.0000626 = 9.8304343
54.2! = -+ 0.0001230 = 9.8304947.

Ii we represent the number of seconds by A, then we are to form
B = (a/60) A. These values are then added to the value of log sin
42°35°. The last digit of the zesultant number can always be in error
by one unit, if the readings are not made very carefully.

To find the decimal point we replace the actual values by round numbers.
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Ezample: 636(0.0083) ~= 500(0.01) = 5, more accurately 5.27.

749 X 16.3/0.067 = 10 X 20/0.1 = 2000, more accu-
rately 1821.

Culy very rough approximations are needed, since we are interested only
in the position of the decimal. If several multiplications and divisions are
to be performed, a division and a multiplication can always be carried
out with one setting of the slide. The intermediate results are not actually
read off, but are carried along by uee of the hairline. A\

4, The game type of caleulation ag disenssed in (3) carn also b&c\anied
out on the lower scales € and D. The accuracy of a single sith reading
is twice that obtained with scales A and B, because of théylarger seale
modutus (cf. SBection 5 of Article 2, written hereafter 33?2.'5). However,
an extra setting of the slide ia often necessary with\fhese scales. It fre-
quently happens that the number on the € scale, to Wwhich corresponds a
solution on the D seale, is beyond the entire range of the D scale. The
entire length of the slide must ther be pushad ‘past the original position
of one index of the slide. The criginal position of this index is first marked
by the hairline on the glass runner, an@\$hen the slide is moved until
the other index comes under the hairline. Then the solution wilt actually
fall within the D scale interval. &y

Of course, time is lost in this qgperstion, and inaccuracies enter into the
celeulation which can, under €ertain circumstances, neutralize the other-
wise higher accuracy of the reading. No general rules can be given as
to which scale should be used in any given operation. It should also be
noted that some of t.i}e more elaborate slide rules employ additional
seales to avoid thisobjection.?

_ A

5. It has béen hentioned that the €7 scale is édentical in its subdivisio_ns
to the € seald, except that it begins at the opposite end of the slide (Fig.
6). If qqful), Yepresents the C scale, then 21, — ¢(u) represents the CI scale.
From'the figure,

® 9L-log Dy = 2L-log D, + 2L — 2L-log C?
log ¢{Dy = log D; + 1 = log I, + log 10
N CiD, = 10D, = ¢'D

where €} is the scale reading on the CT scale. .
If the slide is moved to the left, the expression bfzc?mes oD, = ]_-UDz .
But since this method is used only to find the digit sequence, without
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regard to the decimal point, we do not need to distihguish between the
two cases. With the C7 scale, a number D, = 4D, can be divided by a
series of numbers without shifting the slide.

TABLE
Stock ~
Slide 4 b O
'\
L-log A 2L-log D 2L
B D 1’0'
5l sl
é _ A _ é Q. \ ( 0)
B, B DM 10
L-log B ' _‘§s - log'E
C "»."“ o
".}.; Y Iog lg = tl
fig = A — ’BD D = 2 °
a-M e, - =7 '
2L.-log C = log w
. L ¢
_i‘ } -
)
CI AT = 1004 ,{DyCs = 10D, |log €110 = ¢,
oL — 2L-1og\c*:‘ /= Ae” = 10D¢, = log C'10"~
S\\\
N/ Ae _ DD : _ Ioto—l
A\ {Smﬂ% = 1004 G o = 10Di log oo —
)
A\ _ A D 105!
§L+_2L log ain ¢ T sin’ ¢ T sin g :Iogsin¢
T -1
Ag; = 1004, log 10° = }
g D, _1lop,| me
A tan ©a tan @ 1081
2L + 2L log ian = fan® o = logtne
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‘Ezample: The current I is to be calculated for the resistances B, =
134 ohms, B, = 20.8B ohms, B, = 65.5 ohms, B, = 82 chms. The
potential is 110 volis. Now & = ITR. We use the C7 scale, with the
left index of the seale set over 110 on the D seale. Then, correspond-
ing to the values of the resistance on the CTI scale, the values of the
carrent are read off the D scale:

I, = 8.22 amperes; I; = 3.70 amperes; I, = 1.680 amperes;
I, = 1.342 amperes.
O\
6, The various other relations which are listed in the accompanying’
table ean be easily derived from the basic slide rule equetion (1). In*this
table, it is assumed that the slide is drawn to the right. If it is dzan'$o the

loft, the value on the D scale must be multiplied by 10, while&hé’ value on
the 4 seale must be multiplied by 100. ' )

7. The values for sin ¢ are found with the use of’i:h}'s and € scales.’
If the hairline is set over the angle ¢ on the S scalg\bhen sin ¢ can be read
off the hairline on the C scale. O

To find the cosine, we observe that N

(8 Cos @ == Bin (9@”‘:4 'qn).

In other words, we find the val_ueg‘of‘iaﬁe cos ¢ by use of the sine of the
complement of . For values of p.dich are close to 90° (v. 4.2), the value
of &in ¢ i best caleulated fr:)%'\‘u /

)] gin ¢ = (l.f:cos’ o = (1 — &in®(90 — Y.
In a similar way t%z values of tan ¢, 5°44’ £ ¢ < 45° are read off on
the D seale, For yalies of ¢ > 45°, we recall that

(10) \\ tam o = —i— = S —
N T obe  tan (90 — @)
7'\

i Pricess ean be simplified with the use of the CI scale. The values
of 1/tan (90 — ) can then be read off directly on that scale. .

The values of p smaller than 5°44’ sre lacking on both the sine and
tangent seales, To caleulate these functions for the small angles, we first
observe that, for small angles, both the sine and the tangent cen be sp-
roximated by the angle itself, measured in radians, §o thab

' °44’,
(11) si11p==tan¢=fs%, ¢ <5
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The uniform L seale is used for the evaluation of logarithms. The hair-
line of the glass runner is set to the number on the I scale, the logarithm
of which is to be found. Then the mantissa of this number appears under
the hairline on the L seale.

Every trigonometric ealeulation affords examples for the use of the gine
and tangent scales. The uniform seale may be used for the caleulation of
powere of fen with various exponents.

Ezample: The ratio of the strains 8, and S, of the two ends of the\
belt of a band brake is O\
NS ¢
‘& Y L W
(12) Sl =€ , s.}‘.

7
 {

where.;.e is the coefficient of friction, and « is the.,fin;\gie, in radians,
through which the rod is twisted. Let 8, = 760 kg o = 04, & =

3x/2. Then S
x:\ '
(13) . 8, = 760'6—0'“(3‘(3}?.% Y80e 00T,

NN

First we calculaie R \.

log ¢™*°" = —0.6x log.&> —0.6r(0.434) = —0.818.

If the slide is now lined up é’xfenly with the stock and the hairline is
moved to 0.818 on the L'scale, the value of 107%%% = (0.152 is ob-
tained on the CT geale. ) ‘A simple multiplication will then give the
final result: S, = 1&5.\5 kg.

8. A special a,pphca.twn of the slide rule is found in the approximate
solutlon of qua&atw equations. Thia equation may be gwen in the form
¥ — azx b\é 0. From this we obtain

O )
(14) 3% s+ -=ua
£ \ x

Woere ¢ — 2 + 23, b= pxe . If the slide is moved until the left index
of the C7 scale Hes over the value b on the D scale, the produet of the
values CV-D, lying next to each other, is b, as is also the case with the
roots of the given equation. If values of € and D are found, by use of
the hairline, for which " + D or ¢ — D is equal to b, then these two
values are the roots of the equation. Here we must pay attention to the
sign of the answer as well as to the location of the decimal peint. There
are four cases to be considered:
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I5>0 aa>0 both roots p'ositive.
b.a<0 both roots negative.

<O a a>0 larger root positive, smaller root negative.
b.a <0 Iarger Toot negative, smaller root positive.

Bzample: Let 2* — 429z — 2,623 = 0. From the signs of a and b,
it is evident that the two roots have opposite signs and that the
greater, x, , is positive. We write the equation O\

: e
NS ©
a5) 2 - 288 _ 459, O

If the left index of the CT scale is set at 2.623 on the séé.le, a root is
then determined at about 4.8 on the D scale. For a mofe atcurate evalua-

tion, we now observe that o, = a4+ | 22 |.

p ¥

AN
Opposite D = 4.8 we have (" = 0,546. Then{);; 4.29 + .546 = 4.836.
Opposite D = 4.836 we have (¥ = 0.538./
w¥Then D = 4.29 + .543 = 4.833.

The limit of accuracy has beemféached at this point.’ The smaller
root can be found to the third decimal place. Consequently the larger
root ean also be determirdad to the third decimal place. The roots
then are NS

(16) o= 4833, 7, = —0.543.

In an entirels gimilar way, the roots of the reduced equation of the
third degrge\;m*ay be.found by use of the €7 and D scales.”

9. The slide rule makes possible an extremely rapid caleulation and is
the easigsi;\to use of all aids %o caleulation. It is therefore always employed
whenever the accuracy of its result is sufficient. In 2.5 jt was shown
thaj;,,ﬂw error in reading a slide rule can zmount to 0.1% for a eareful

\'Qading on an aceurste scale of modulus of 12.5 em. Now, in performing
a simple caleulation, at least three readings are required. According to
the well-known rules of errors, the resultant error then amounts of 3!
times the error of & single reading, ie., about 0.17%. But in the actual
e of the slide rule, the operator does not usually take the time for such
careful setting and reading, so that for rapid work, a mean error of 0.3%
must be expected. When a complicated caleulation is performed, in which
a larger number of readings is mecessary, the inaecuracy of the result
becomes much greater. The mean error will be balf as large, ie, 0.15%
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for calculations involving three readings on the lower scale of the slide
rule. Slide rules used industrially with a scale modulus of 50 em, are even
mere useful. The error in simple caleulations on the lower seale of cne of
these smounts to about 0.075% or 0.19,. Recently, slide rules have been
manuiactured with a seale modulus of 100 em.”

NOTES ~

TransLaToR's NoTE: The materint of this paragraph has been largely rca:ritten by
the transiator in order that it apply to slide rules of American design. 2 N

9. The reader should have a slide Tule at hand in order o understand-whatfotlows,

3. See, for example, the Keuffel & Esser manual for the log log duplextrig slide rule
(New Yorlk, 1930), pp. 12-13. : ™

4. Some slide rules employ a different sine seale, which is thetlised in conjunction
with the B scale. Rules for the use of such a seale ean be fpt{nd» in most eommercial
manuals,. ‘N

5. Further detsils on the method of iteration employed kere will be found in 18.5.

6. For example, sec Runge-Konig, Numerisches fex (Berlin, 1924), p. 16 ff.
7. Other continuous caleulating devices are df&z{i ed in Willers, Mathematische
Instrumente {(Berlin, 1926), Art. 2. 'a

"

3

4, Linear Interpolation gy Scales and in Tables

1. Up to now we have assumned that the successive strokes on the
function scales lie so close together that linear interpolations can be made
by estimating within the intervals. That is, we have assumed that we ean,
with satisfactory apprqxiiha,tion, replace the portion of the curve lying
between two successive.ordinates in the graph of the function by & straight
line. But with such\scx.les as shall be considered, this is the case only se
long as the disbqnée between the peint linearly interpolated by the eye and
the point actaally representing the value of the function remains within the
limdt of acouracy of the reading. For example, with a distance between strokes
of 1 mrgrytins error distance must be smaller than 0.05 mm. If we assume
tha,t\%e finction f(x) increases in the observed intewal; then the distance

A\ between strokes is

e

“\ Eyf {x+h) | A= E[f(z + ) — fz)),

[a—————Eyf{x4+1h) .
——Eyf(x)—y——t.ra_ and we must estimate the intermediate
X . prd )

b h values
Fia. 7 o4 0k x + 0.2h;
| x + 0.9h,
or, more generally, & -+ nh. The estimated position of the poi
0 point on the
scale is therefore lo = HE,f(z) + »\, while the actual position is { =

E,f(z + nk}. The difference between these values must be less than

. 0056 mm., ie., |l — 1| = Al = 0.05 mm.
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If {his expression 15 expanded in a series which is terminated with
terms of the second order, then

| /) + nfle + k) — nf(@) — flo +nh) | < —-Or
10) + 1@ + nhf"@ + n s @) — i)

e =k — )
¢\

7"\
n{l — n) m)‘-j < al

The product (i — =) has its maximum value for » = 1/ 2,\@% n(l —n) =
1/4. 1f the inequality holds for n = 1/2 ie,if

ey

Al \\

O.’

f”()

then it certainiy holds for the other pomts ‘of the observed interval.
From this it follows that if linear mterpolamon is to be possible, the
magnitude of the argiment mcremen.ts h must be so chosen that if
Fiiz) =0, D\

."
™

9 Iy 5_841__

@ SAIK

If the magnitude of & :%hou'bled then the minimum distance Al must be

four times as large, Qr & seale modulus must be reduced to one fourth

of its previous valuen.
N \

2. To get sdhae “oriterion for the critical scale modulus, i.e., the modulus
for whie t%haar interpolation can still be made for the usua.l distances
between! scesgive strokes, we assume that the argument inerement .
is usediin the scale interval from z. 10 Zus If we also assume that
h€" srgument increment inereases with =.. , then, aecording to equs,tlon 4
‘ob Article 2 (written hereafter as 2(4)), hn = 2w , and by 2(5), if is the

{stance between the strokes at the ends of the interval,

21
fg = 2hpy = —— 7
- P T B

If this value for k., ia substituted in equation (2} of the preceding section,
then

H | < 8al
Elf'@ B, |17@ |
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SN L@ |

® B2 sy

Since Al is approximately 0.05 mm. and A = 0.5 mm., then

O

N oo
\
\/

I
‘ B >a25 @1

DC) S .
Ezample: To use linear interpolation on a logartthmic seale wﬂ}xout
leading to incorreet results, the inequality £ :\
2 7NN ¢
. 22 C
E, - 2.5 ..",‘2 logemm. “:“

must be satisfied. If we let £ = #,,, B, > 5. 75400h. For an interval
with a minimum distance between atrokes ‘¢f } mm., &, must be
greater than 23 mm.

As another example, we investigate thewdog sin scale of the slide
rule, for which E, = 12.5 em. The intérval of the scale is sought for
which a linear interpolation is ne‘\longer possible with ordinary
interval lengths. Here « W

X

f(e) = logsin o; f'(p) 2 log e- cot o; f77(p) =

_ loge
ain® '

Equation (3) now becgméé'

{”; A loge
\%' ZATsin® o{log o oot o’

where ¢ = .{p;,,:.’ If as a first approximation we set ¢ = Oms A =05
mm., Al %005 ram,, then
> : 2.5
:"\“. Ev > —
N 0434 o’ p ™

2 Sjmce E, = 12.5 cm., it follows that

Cos ¢ > (—*—"2—5—-)% = {1.215
€~ \0434 x 125/ — U215

m.

Linear interpolation therefore does not lead to incorrect results for
values of ¢ for which cos ¢ < 0.215, fe., » > 77°.1

3. In the case of direct linear interpolation in tables, the inferpplation

error Al/E, mentioned in the preceding section must be smaller than one
in the last place of the tabular values, If this error is denoted by A, ,
then aceording to equation (1} we have
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@ a>E e 1

For log tables, b can be set equal to one. Then the logarithms of the num-
bers 100 to 1000 are given accurately in four place tables, those of the
numbers 1000 to 10000 in five place tables, and 10000 to 100000 in seven
place tables. In the evaluation of the logarithm therefore, the expresam;n{

R ey | o 0B E

hss & maximum at the smallest value Listed in the table. For é{(}a,mple,

N
#

Number of places in the table 4 X 6
2 100 10@ 10000
A, {approximately) 5-10°° . 5-107%,

Since the errors here are materially smaller than'cne in the last place,
linear interpolation ean be used without hesxta.’tlhn

Ezample: In Deutscher Kalender Jin Elektrotechniker, 1917, p. 26,
the tangents of the angles are gwen by degrees, accurate to four deei-
mal places. In this case, .~.

M) =tang,  [le) = IS8 an? g, £(6) = 2 tan o(1 + ta’ o)
If linear interpolation .igto'f)e possible, then A, < 0.0001, i.e.,
B2 2N
;8“\’\-‘«2’(tana ¢ + tan ¢) < 0.0001,
ot, since h w,illjbe in radians,
A</ .
Ot tan p < 00008

©o17asy ~ 181

R\ p < 39°.
e "If, as i3 the case in the tables used in many schools, the tangents
\\; " are given for each degree to three decimal places, Yinear interpolation will
result in errors whenever ¢ > 66°, If the values of the tangents are
given to only twe places, errors result for ¢ > 79° If such intervals

do oceur in tables, they should be plainly marked.

4. With ¢nverse interpolation, the value of the function y is given and
the corresponding argument x + =k is sought. We form

b= Y@ = J@)
F+ R — fl=) FKC)
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Neglecting terms of order higher than the second,

¥ = f(z) + nhf'{x) + %h—f"’(:_c) from which follows

S (BN o

) 2 f@
In this case then, linear inierpolation is permissible whenever
. . ﬂ%g f”(x) .‘\“\'
5 A > === e\
® 2 | 1@ O

where A, is the unit of the last digit interpolated. Iﬁ.iﬁté}polat-ion is made
from the higher or lower boundary value, accordhgg\a's’n is larger or smaller
than 1/2, the worst possible value of this expréssion is obtained for n =
1/2. Therefore we must have

Wl ,}'\\3
6 A, ~/—%.f“ .
{6} >3 P

For log tables, ™

~

w1
.}.’A‘ > 8z’

N ¢

independent of the base S the logarithm. From this we obtain the fol-
lowing table, providec%»t t there are no other errors involved.

7

Number of plages ﬁ\\t*he table 4 5 7
Smallest value of %, 100 1000 10000
a Q" - 0.00125  0.000125 0.0000125
Possible nu{’llger of places in the number 5 7 9

) E”a;?gﬁplfz: We seck the interval of the log tan ¢ table for which Jinear
) g}erpolatlon of the angle from the values of log tan ¢ is not possible.
ere

AN
N\ =1 CPY Iog ¢ _ 2loge.
V fle) = log tan ¢; f/(y) m S 5

n ~4 log e cos 2,
— ;
o) T o,

If linear interpolation is to be permitted, according to (6),

> Gl eot ) |
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or, if k is expressed in minutes,

PV

2 2
20> B ootz - (0.01745) _

60

First of all, that is certainly not true for ¢ = 0 or x/2. If a place
“table is available which gives the values in one minute steps, and if
interpolation is made to seconds, the error must be smaller than

A, = 0.01745/3600, i.e., N\
0.01745-4-60° O\
ot 20 | < 35000.017457 ~ 2% AN
From this it follows that )

7Ny
| %

20: > 18 or  2p < _17@{74\5';"

Therefore, inverse linenr interpolation will lead 4opxror for values of ¢
for which ¢ < 8 or ¢ > 89°52’. O
In general, the infervals in which direct and,t'i@erfse linear inierpolation
can lead to errors are not identical. These i{rbc?rwils depend on the mag-
nitude of f(z). If | f'(x) | > 1, then the fegion of naccuracy for direct
interpolation is the greater; if | /'(z) | X .1, that for the inverse case is
the greater. For example, in the tablg“given above for log tan ¢, direct
interpolation will lead to errors if, 0N

| cot 2p] > 545 [ in e |,
ie,if o < 1°14’ or ¢ > éé“%f.

5. In ordinary tables, the error due to rounding off the last place ususly
far exceeds the imfer}}olation error. In general, the functional values ap-
pearing in suc]{j;ables have beer rounded off, while the argument values
usually do not{reed to be rounded off, Therefore the error of these funection
values willMee at most one half unit in the last plaee, or to 1/2 107" in
r-placebabies, If A, is the error of f(z), A, that of f(x + &), then the error
of‘ﬂ%e.’value of the function values f(x 4- nh) amounts, by direct interpola-

"hgn, ‘to

Ag_a
h

A, = A+ onh = A1 — m) -+ Agn.

In addition, there is the error A; which appears when the interpolated
value of the function f(x -+ %A} is rounded off. This wili also be at most
one half unit in the last place. With this included, we have

CA, = AL —n) 4+ A - A
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Since n is always positive and never larger than 1, this expression always
satisfies the inequality

@ A, £ 107
Therefore the total error will be no larger than one in the last deecims)
placa.
For tnverse interpolation, the exact value would be £\
= A= F@ . y— i@, O\
=TGR - I @ A
but the value caleulated is (‘.‘}"
, ¥y~ f@) — A " YEPD — A
n'h = “hoe= h.
Je+ 8 — f@ + (4 ~ 4) RE(E) + A, — A,
Since A, and A, are generally small in compsgr%mﬁ toy — flz) and &- f(z),
the approximation \ &
1 ¢ ’t v A — A,
n'h = ¥ — Fflx). >4 )(]_ —_ _.___.)
z) AR ()

may be made. Neglecting tern}s’{ﬁ‘AI-A, and A}, this becomes

n'h

1 e y — f@)
= SR — A - LTy
76 LI iy = )]

Then the error due ﬁc@dﬁnding off is
.
A& ———— | (—A, — nlA, — A
EE Tp@ ! T e - Ay
(8) xt\...
."\$~

10~
QO

R BUONE
{[‘he error which results on rounding off the value caleulated for « can

\“Igemade arbitrarily small, sinee 2 ean be caleulated to any desired number
of places.

1 1
grfr(x)llal(l—"ﬂ)'i‘Aseniég

Ezamaple: If we are to find an antilogarithm, then

107

4. = 2loge

cx o= zl0T.

The error of rounding off is then a maximum for the largest values
of z appearing in the table. This is shown in the following table:
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Number of places in the table 4 5 7
Maximum value of z 1000 10000 100000
A, 0.1 0.1 0.0L.

The error of roundihg off will therefore be no more than a single unit
in the last place ordinarily caleulated from $he table. The interpolation
error caleulated in section 4 iz then negligible in comparison with these
errors. Equally large errors due to rounding off are encountered in other-
wise ordinary tables of functions. N\

6. To the errors of interpolation and rounding off should be ad(\ie}}?he
error of data, discussed in Art. 1, which affects the accuracy of the sumber
which is to be used in connection with the table. This error m {the value

© A =1 R
The total error of a Teading from a table is then \%

B’ SN
(10) A<|f@]- | as]+ 5| S0+ 107,

for direet interpolation. Here 4z is the indeiiracy of the initial valué s,
k is the difference between two suceesawe values of z in the tab]e, and r
is the number of places in the ta,ble Y

Example: In a five plac&lgg table, the log of a number which is
rounded off to five digits"may be obtained. In the most unfavorable

case, N
ASNEE | g BMoke o
N 0. 4343
oY < {005)+ X 1000,+000001
"\
\O
= 2107 4 5.107 4 1-107° = 3.107°

o “\Therefore an inaceuraey of at most three units in the last place is to
\ Y 7 be expected.

With inverse interpolation, an upper bound can also be placed on the
total possible error:

(i1) Ay 1 10

A< .
| £} | P 2|

Example: We seek an antilogarithm from a five place log table.

The error in this table is no larger than one in the last decimal place.
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Then

Fc 10 1 110% 3 10° 1
t<poBtation=5% sun T

Since, as we saw in section 4, the error of interpolation in log tables
is exceedingly small, A will have its maximum valure for the maximum

value of , namely, 10000; therefore e
-3 107 1 A
A<2'm+8.104—-—0-3- '\.\“’\

The fifth digit of the number can then be in error, by mno more than
three units, “: ’
"

7. Finally, let us compare the Inaceuracy involyved in the use of tables
of addition and subtraction logarithms (ef, N6, as are ealeulated by
Leonelli® and Gauss,® with the ingccuraey in¥olved in the use of ordinary
logarithmie tables. We can disregard the\érror of interpolation in this
case. The tables of Gauss are used to godirectly from log z, and log 2,
to log (x; &+ =} without finding the\numbers z, and , . In the usual
bresent day arrangement, which s due to Wittstein,* for each value %,
the value N

& ='log (1 + 10g)
is given in the tables. PR\Y
In order to find log\(ig‘,w-il- Z3), we form

57 logz, ~ log o, = log & = log ¢
P2, 2z
from the valtiesTog z, and log %, , and obtain
\v

,'J\\"f = log (1 + 109 = log (1 + 4 = log (I -+ %)
R 2
Jfrom the table. From this, we get
N og (@ + ) = log 2, + ¢.

Instead of this, it is occasionally more advantageous to form log z,/z, =
log 1/¢ and then

log (x; + z,) = log 2, + log (1 + %‘) = log z, + log (1 + %)

Then { is to be added to the larger of the two logarithms,
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If the log (&, — z,) is to be formed from the given values log 2, and
log 2, , the equation

¢ =1logz — logz, = log% = log ¢ .
ia set up. We then observe that .

N\

£ = log (10; — 1) = log (— - 1) = log {{ — 1).
RSN
For a given value ¢ we therefore obtain ¢ from the table, just assgn anti-
logarithm is found from ordinary log tables. Then the expression"

log (#; — z} = log o, + & e\
ia formed. As above, the value which iz found must b}added to one of
the logarithms, this time the smaller one.

Also as above, we occasionally form ;’\\’

log (4, — 25) = log z, + log (¢ — 1} log 2, + log 1 — ),

where the last logarithm is always hegative. In investigating the ac-
curacy, we must keep in mind that) for Gaussian logarithms, direct inter-
polation is used in the first cases w,hlle inverse interpolation is used in the
second. -

First we shall estimate tl%s error involved in a caleulation with ordinary
logarithms. Suppose log &, Jand log 2, are free from crror. Then, by equa~
tion (R), the errors of %nd & ave (220770 /(2 log €) and (21077 /(2 log €)
respectively. The errpr of x, £ 1z, is at most ({z, 4+ z)1677)/(2 log e);
from this it follo'.ys that, by equation (10)

log {zx, + a:z)"has a maximum error A = 1077/2 + 107" = (3/2)107",
log (z, \xz) bas & maximum error A = (z;, 4 2,)/2(2, — 5)10" + 107",

Thig latter error can be quite large for nearly equal numbcers z, and z;, .

Afon the other hand, we use Gaussian logarithms, and if we assume,

~as-gbove, that log z, and log z, are exact, then log z,/, is also exact.
The error of log (1 + ,/z.) is then, by equation (7), ne larger than 107",
and since log x, is exact, the error of log {x, + x.) is also, at most, 107"

In the caleulation of Iog (z;, — =), log x./7; is again exact, by our
original assumption. Since the function f(z) = log (1 + 10°) is tabulated,
then f'(z} = (log e-10*-In 16}/(10° + 1) and the error of log (z, — ) is,
by equation (8},

1077 _ 1077( 4 107) —

4, =
2f'(2) 2.1
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where it should be observed that 1 + 10° = =z,/z, , so that
10" = (z, — )/, . Here also, the maximum error is smaller than that

which results from the use of ordinary logarithms. ®

NOTES
1. These olbscrvations are extended to curved scales in Bchwerdt, Lehrbuch der
Nomaographie (Berlin, 1924), Art. 16. ~
2. Leonelli, Supplément logarithmigue (Bordenux, 1802},
8. Gauss, Zachs monatliche Korrespondenz, 26 (1812}, p. 498, A
4. Wittstein, Sichenstellipe G he Logarithmen, (Hannover, I866). 2N\
8. Laroth, Vorlesungen tiber numerisches Rechnen (Leipzig, 1900), Areaag, ©
N

5. Nomograms. e \
N

1. Nemograms are graphical charls tn which &me.j‘a}wﬁonal relationship
of three or mare variables is so represented that it e possible, conveniently
and accurately, to determine vahies of one Va;'i:ﬂslé corresponding to given
values of a group of other variables, As an example, we may refer to the
wetl-known representation of Boyle's law, jov = ¢, where p and » are
chosen as coordinates. For each pair of'wilues p and ¥ a value ¢ can be
read from the diagram. Also, for evelyip and ¢, a v can be found, as well
as a p for each v and e Nomograms oceupy a special place among sids
to caleulation. For ecertain commthy used types of formulas, nomograms
give solutions over particular rahges of the variables. They are not to be
used in the same way a.sj;a’\h]es, slide rules and ealculating machines. On

the contrary, each nomg ram is applicable for only one type of equation.

TR

R LIINAVON NN
S\ I \\ YN b
s’\\“ [ \ \ \ : \Q \’%\

\\, 5 .
~O ’ % )
V LN Ne N

. \\:f e

, - B S

1 4 ¥ ihﬁ___;up
Fi1c. 8

The. nomogram in Fig. 8 can also be used, for example, for the repre-
sentation of Ohm’s law, 7 — IR, or for the caleulation of eleetric power,
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P = EI, or for the relation of velocity, time and acceleration, » = af
in the case of uniformly accelerated motion, or for the kens formula, where
the object and image distance are given from the focal point, #.2, = 7,
ete. Only the letters, the units, and the particilar ranges of the variables
are changed. We can therefore use dimensiontess numbers, only we must
always keep in mind the region over which the nomogram applies. No
general rules can be formulated for the transformations which must be
performed on the formula to be represented in order that the resulant
nomogram can be read most conveniently. These transformations maust
be considered in each separate case. ¢(\A
"N

2. Nomograms are available commercially for a great miany equations.
Their preparation is often very difficult, Whether of 7n0t ‘their manu-
facture is profitable depends on how difficult the nomogram is to prepare,
and on how great & demand there is for the pa,rticﬁla_r type. Also, the
nature of the application is important in determining the type of nomo-
gram which is chosen. For nomograms whic{:k to be used in the labora-
tory, for example, we would not choose nbteograms with special contriv-
ances for reading purposes, such as a sﬁmﬁght edge capable of rotation,
in ease these cannot be fastened firmly,to the working table.

The reader should also note that “only epprorimate values can be ob-
tained from nomograms. The approximation, which depends on the type
of the nomogram and the aivangement used, cannot be extended in-
definitely, because it is limhited by the size of the paper, which must not
become unwieldy. The@décuracy also depends on the experience and skill
of the operator. He\x{l\léf be capable of estimating accurately to a tenth
of a division, with\intervals of 0.5 to 5 ram. Larger or smaller distances
hetween divisioh’strokes or curves are not rccommended. Practice is also
necessary for\' reading non-uniform seales and curved lines.

3. {"Qﬂéﬁm seales are used for all nomograms. Besides the scales already
meqtioned in Art. 2, the principal function scales are the power scales,
g =4x", and the projection scales, ¥ = az + b/(ex -+ d). The former are

{ \tged mainly because they afford an especially accurate representation in
particular regions of space’; the latter hecause of their great adaptability
and the ease of their construction by projection of uniform scales. Curvi-
linear scales are also used. Nomograms always involve the representation
of a function of least three variables. We shall omit discussion of nomo-
grams which require special reading devices. Of the other types, only
charts with networks of seales, oceasionally called Cartesian charts, and
alignment charts, will be described. For a more detailed study, the reader
is referred to the extensive literature on the subject.®
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4. If we consider the relation F{z, 3, z) = 0 which can in general be
written in the explicit form z = f{z, 3/}, then the variables can be regarded
as coordinates in space. This equation determines a surface which is mogt
simply represented by contour lines while the zy plane is generally chosen
as the plane of the drawing.

Buch nomograms are especially simple to construct if the conrtours are
straight lines or eircles, and not more complicated eurves, such as tlkose
of Fig. 8.

N\
2\

Fig., &

Exampie::The homogram reproduced in Fig. 9 can be used to obtain
the roots af the reduced equation of the third degree
"\ W ?

O S petg—o

fqr alt real coefficients pand ¢. f we set p = g and q = y. then for
" ¢each real root z there is g straight line '

\‘;
z%"""%-f—l:—.ﬂ
z
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on which two equsl Teal Toots are ohtained. A second method of
treating the problem would be fo draw the discriminant curve, and
then lay a straight edge from the point p, ¢ tangent to the diseriminant
curve. The roots could then be read from a scale at the side.® For
example, if _

2 — 3752 —46 =0

we first locate the point with coordinates p = —37.5 ¢ = —46. This,
lies between the lines numbered —1 and —2; —5 and —86; 4-G ahd
+7. An approximation yields z; = —1.3, 2, = —b.4, z; = 6.6
Of course, many more lines must be drawn in, besides those8hown in
the figure, if the nomogram is to serve any practieal pu'rpias\es.

Theé curves which have been drawn also permit thé\evaluation of
two complex conjugate roots. Since the coeﬂ‘iciel}jﬂ'\oi z" is zero, the
real part of both complex roots must be equal t19.one half of the real
root, with the opposite sign. The straight line eontours may therefore
be used to find the real parts of the corppi}x roots. If we let z =
% -+ ¢», then the equation 2° -+ pz + qQ.——.—\s)‘Separates into two parts,

w — 3w’ + pti:-F-‘g =0,
3u®y —vzf' ¥ py = 0,

from which we get N

U":‘:“ 2 — 802)2 _ R
( 3 )( 3 =T
If we again set p\= x and g = y, the equation of the curves which
have been drawal are again obtained. For » = 0, the discriminant
curve is obtained. For example, with 2° + 24z + 160 = 0, we first
obtain the.yeal root z, = —4 at the point p = 24, ¢ = 160. The rea!
P of ‘e complex root is then +2. Since the point also lies on the
csr(vtq\f: +6, the complex roots are z; = 2 + 6i, 2 = 2 — 67
«Ifp and ¢ have such large values that the corresponding point no
" ¢“onger lies on the nomogram, or if they are so small that reading
\\; “would be inaccurate, then the substitution z = m{ may be made.
The equation then becomes

P+BreL=o0
i

and m is so chosen that the point has a convenient location. For
example, if 22 — 0.55z -+ 0.224 = 0, m is set equal t0 0.1.

5. Generally, ea.ch equation of the form
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1) xo(z) + ylza) + x(2) = 0

can be represented by straight lines by the use of uniform seales on the
z and y axes. If the function scales x = f(z,), ¥ = g(z) are used, then
each equation of the form

2) f(zsr)'ﬁ"(zl) + glzs) @) +x(z) =0

can be transformed into two families of straight lines, parallel, tg"¢he
axes, and one family of arbitrary straight lines. More generally, we can
congider the three straight lines )

7"\
x+ by +e=0; O+ by + 0= 0 aﬁ—l-?::,:y‘#— e = 0.

These meet at a point if the deternsinani of the cogﬁizzient.s is zero. If
now the coefficients of the first straight line are d@pfeﬁdent only on z, ,
if then a; s ¢, = ¢,(21), b: 1 1 = ¢,(#), and if the wocthicients of the second
straight line depend only on 2, , etc., then three families of straight lines
are obtained, the parameters of which are 2., ,‘;z} » and z, . Three straight
lines, one belonging to each family, meet af*a‘point if

e1{z1) ’h(z;}; \ ‘1

®) mm G 1) =o0.

~

|t a1

. . AN\
Each equation which ganlbe pul tn this form can be represented by three
Jamilies of straight lineS\\

6. The transfofmiation of a given equation jinto the form () can be
effocted in di.[%’fgnt ways. We naturally choose the way which yields the
most accurate/reading, and which is easiest to uze. The equation py = ¢

already g!i{{g:r’ammed in Fig. 8 may be used to demonstrate how different
representa}‘ions are possible for a single equation. Here then we consider
only\.ﬂ]'é form of equation (2).
.:\If" wesetx = p,y = Ay, thene = ) z/y. This is a family of radiating
Mipes whick can be drawn without caleulation. In France, this chart is
known as a Crépin chart (Fig. 10), It is frequently used for multiplication.
On the other hand, if we set z — P, ¥ = A, then » = y/Az also forms a
family of straight lines through the origin. This nomogram (Fig, 11) is
k.nownl in France as Chenevier’s table, and is used mainly for divizgion,
since, in this case, the entry kines are perpendicular to each other. Charts
of this sort, in which a pencil of rays passes through a point are called
ray nomegrams. The rays can be drawn with a single straight edge which
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tarns on a pivot. By a projective transformation, chartz can be made
from these tables with fwe pencils of rays. These rays can then be replaced
by two movable straight edges, the positions of which are read off on

<
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seales at the side. This type of nomogymﬁ is obtained for an equation of
the form @(z) -¥(p) = x(¢&) if function scales are used. A third possibility
would be to put the equation g = ¢ in logarithmic form; log p + log
v—loge=0If zis Writte\n" for log » and y for log p, the result is log

e i,
: - e -
o RN N
"\u\“ M ANANINRERY > y
Y)Y 4 o
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™ \\ \\ IR
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e =

L )

is especially easy to prepare when double logarithmic paper is used.

z 4+ y. D'Ocagne calls this nomogram Lalanne’s chart. This chart
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7. If formulas are used which contain more than three variables, separate
nomograms of three variables each must be drawn, using auxiliary vari-
ables. These nomograms are then connected by means of a farmily of
curves as auxiliary variables (Fig. 13a and 13b). The values 2, and z,

X
Fra. 13a Fag13b

\

determine curves ¢,(2,) and ¢a(2;) the interse,cﬁl‘o\n' of which determines &
curve of the family ¢(z). This curve need 'll}t“be numbered. We follow
this eurve to its intersection with the eurye’of the family ,(z) whick is
determined by 2z; . Thiz in turn determings a curve of the family ¢,(z;),
and consequently the desired value'z;.'is"found.

8. A second type of nomogram, the alignment chart, can be eonstructed
in the following way. If a relgtion among the threo variables is tabulated,
then a seale can be prepairea* tor each of the varigbles. The z, scale would
have the equation x, Qp’,;(z,,), Yo = ¥u{z.). The funetions ¢, , ¢, should
be so ehosen that thewalles of the three variables which satisfy the equation
to be repregented s\

N

(4) .’\:“. g(zl )zé ,23) = 0,
lie on a wa}ght line. The points are therefore collinear. The condition

that thréé\points be collinear is that the triangle determined by them has
zero atea. Therefore the determinant of the coefficients must be zero, t.e,

O
N

\ Y £ n 1 e1{z:) ¥alz) i
(5) 23 Ya 1| = fp:;(zz) \bz(Zz) 1[{'=0.

: S T | eslzs)  fulm) 1

Each relation (4) among the three variables which can be brought into
this form ean be represented by an alignment; chart or by a double net-
work of seales, since the equations (3) and (5) are identieal, The question
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as o whether this transformation is possible, i.e., whether the equation
can be so represénted, has led to detailed investigations.* Tn practical
nomography, several kinds of equations have been set up which can be
represented by particular types of such nomograma. -

9. Of special interest are charis with threz parallel scales. In this case,
the abseissas of all the points on each scale must have the same valye,
Therefore,

ale) =65 ) =6 ealzs) = 6, .

2 A\

7N\S ¢

a  ¥le) 1 N\
. = {es — e¥n(z) -+ (e — Cs)\bz(ﬁ:}’.
6 | ) 1 \"

ie, equation (5) becomes

4 (&2 — Cl)ia(zs) =0,
& ¥s(za) 1 RN

if the determinant is expanded in the minors of t.he ‘middle column. There-
fore, the condition that an equation can be pepresented by an alignment
chart with three parallel scales is that the ’e»gﬁ&tion can be put in the form

(7 Cofilz) + Cz!bz(z@]:'}': Cafalzs) = 0,
where ¢, + ¢, + ¢; must equal zgm; N

Ezample: A nomogram,ig t0 be constructed for the bending S in
mm, of & cylindrical :bn'\rL of length ! mm. and radius r mm., with one
end clamped, and Vf'lh} & load P kg. on the other end. The formula
for this caseis ()

::'\ s = o mm®
»\\ 3B ’
where, 3)5’ = 3. If we assume that the bar is of steel, then E =
21,000%g/mm.?, ie., (B-37)/4 = 49,450, Therefore, we have
AN

e\

- 3Ex

\\‘ logs —3logl 4 4logr+ log 1 = 0.

This condition on the constants can be satisfied in various ways. For
example, we can write

) i
—1f1 — logs) —~ 8logi+ 4(10gr + i log 49,450) = 0.

All scales are now to be drawn with the same modulus, The ! and
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r scales are in the same direction, while the s scale is in the opposite
direction. The distances between seales are:

from the r scale to the I seale, 65 — €2 = —1
from the s scale to the r scale, ¢, — ¢ = —3
from the [ scale $0 the s scale, ¢z — ¢, = +4

A P kg S A

mm mm A
i 0.4 10580
7'\ “
2 —E0-8 5 )
=3 B3
5 . '..,'\‘ 2
5 ""--..,__\: .
10 10 \
D
20 so-” 0.5
100 0.3
50 ) 0.2
_OE 500
100 W T E4000 .1
200 0.05
0.03
300 0.02
10003\ 0.01,
A
\ Fio. 14

4 \Qt

as.ja’shown in Fig. 14. The r scale is shifted somewhat, along the
Jvertical axis. If & = 1 and [ = 1 are connected by an index Iine (dotted
ot the figure), the point + = I is shifted about 1/4 log 49,450 =
7\ 1.1735 units toward the positive direction of the  seale. As a matter
N/ of fact, the scales can be displaced arbitrarily along these three lines.
The scales are set so that the index lines cut the scales as nearly
perpendicularly as possible for the most frequently used intervals of
the chart. In making the drawing, any arbitrary units can be chosen.
In faet, the unit for the distance between the scales can be chosen

independently of the unit for the scales themselves.
A P scale is also drawn in this figure. This scale permits the de-
termination of s, the bending per unit load, from any load P and the

actual bending 8. We have S = 3P, so that
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log 8 — logs — 2[% logP:l =90.

We can use the s acale, which is already drawn. Also, the I scale
can be used as an S seale. Then we need only draw the P scale, with
a geale modulus one half that of the other seales, equidistant from
the S and [ scales, and in the same direction. Since there is no additive
constant here, the pointe § = 1, P = 1, s = 1 He on one index line. _

In this case it would not be necessary to provide the line correspending
to the s scale, with an actual scale. We need only find the proper poifit)s
on this scale for the given P and S, and then connect this point with\the
point on the I scale which represents the length of the bar.”'l‘ﬁé‘ first
reading is then made on the r scale and not on the s scale. Inthis method,
then, we use two index lines, These serve as connection§ between two
alignment. charts and make it possible fo express equafions’of more than
three variables in this form. If a right angle or two ifitersecting straight

edges are used to make the readings, nomograms’ be prepared with
four seales, on which all four variables can be resd off with a single setting
of the reading device.® P N\%
10. An equation of the form . ~j~’:;
0 ¥z 1 \\

| = Btz — () + el ()
® |5 dal 1] O
Ple) — $ale)) = O,

@a(h)ﬂ%(zs) Y \1\

corresponds 0 & nombgrém with fwo parellel scales and one inclined scale,
with the equation % = max. (This is not & special condition, sinee the origin
of the eoordin té\;,if'stem can always be put at the intersection of two
scales), Heré\3s the distance between the two parallel scales. From this
equa,tion1 ith follows that

R EN)

where g, = 8/(1 — g(zs)). For example, to tabulate the equation pv = ¢
in this form, two parallel scales f{z;} = p, h{z) = ¢ are drawn with a
separation of 3. A third scale is then drawn perpendicular to these:
(m = 0) ¢5(z;) = 8/(1 — v). I we let m depend on & fourth variable z, ,
we obtain a family of scales between the two parallel seales. If we construct
& curve connecting ail points on these lines which have the same sc.ale
values, we get & binary scale, as oecurs in a more general form in section

(%\3 ’\31(21) M — [Yules) — mél = J (31)'9‘(53) — hm) =0,
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12. The nomographic type deseribed here corresponds to an equation of
the form
f(2)-g(as) — hzs) + dk(zi) = 0.

Another type of such a nomogram would be one with three nor-parailel
lines passing through a point. The corresponding equation is

@‘1{2’1) MﬂPl(ﬂ&} 1 | ) 1 my 14’1(31) Q.
(10} 'Ps(%) Mapa(zz) 1] = |1 ma ligs(es) '601(21)'99‘2(32)'%.(33}"% 0,
ealzs) maps(e) 1 1 my lips(es) AN
_therefore \:
Ny — My Mg — My My — M2 \ .
= 0,
ez) ¢2(22) + al2a) \
o
or ¢*L
c C c O
L z 3= hete\Y C. Oy = 0.
D elz) + @22} #3{7a) 0 ¥ 'em" v+ Ot G

This is the same form of equation ;{%’ was obtained with three parallel
scales, except that here the recipréeals of the functions appear. Such a
nomogram would be very useful for the equation

i...}l + 1_ g
™ b f
Three uniform scales would he used here, with different seale moduli. Three
reciprocal scales arg'ngeded in the case of parallel scales.

The general cgda 0f three straight line seales of arbitrary position is
treated most si;ﬁp]y by the theorem of Menelaos, and leads to equations
of the forn\‘”,,\' ’

: "\

A

12 T} gles) - hizg) = 0.

AN

“M:Another important type of equation can be represented by two
g}mmllef, atraight line scales and one curved scale. 1f one scale is placed along
the y axis, the other on a line parallel to it at a distance 8, then the equation
(5) becomes

0 Yale) 1
(13} ] dlen) 1| = (alen) — ¥alz)) + @) — i) = 0.
'Ps(za)\ba(zs) 1
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From thiz it follows that

4 ) + e 3 fsﬁzs} +e qoa(:;?(zﬂ 5

= fla) + g(e2)-hizy) + e} = 0.

Erample: We again consider the reduced equation of the third .
degree \
Z+pz+qg=0 O

If(z) = ¢, g(z2) = p, then ¢,(z;) and ¥,(z;) must be detem}iﬁéa b}
the two equations P\

Pz a [ "i."
=" — 2P = ——= A\
3 — e’ w3 — B )

7

From the first of these, we get ¢y == 52/(1 + ;%-f z. If this is sub-
stituted in the second, then ¢*¢

z

A
» v 97‘-'9 R WV L,
g o8 L/$
E N 45
» A1 s
3 R iod
e &\J - v2
25 N ot
& :
O W
’\f 2
" e
-J-
.’-
e
-‘-
_7.-
Fra. 15

£ 5z ) 2
y=#=EG:?—5- T+2
This curve is plotted in Fig. 15 for posit.i_ve value:-s. of z. To get the
negative roots, z is replaced by —z, and the positive roots of the
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equation 2*  pz —g = 0 are determined. The complex roots u =+ i
ean also be found with this nomogram. We saw in section 4 that the
real part is w = —2/2, where z, is the real root of the equation,

and that the eguation

8 — v +p=id—vtp=0

4
is then obtained. By use of the p seale, this is represented by a némb-
gram with three parallel seales in the form A
¢\
Z fi'_ z) _:i _ :\’\.
—4(79 +5E +p=0. K

In this case two quadratic seales are used. , :
o

12. If a so-called bingry scale, i.e., a network di\durves dependent on
two variables, is used in place of an ordinary sedle then a nomogram can
be prepared with two paraliel scales for an t?gggﬂt-lon of the form

0 '191(31) 1= 5{#’3(%?.,‘&) - ‘!’1(31)}
a8 | we) 1 O 4, w)he)
ez 7)) Yslas , 24) "1‘ ' — dufzy)] = 0.
From (15) it follows that K

16 e+ gl 2t sl

A well-kl}c{xifp"’emmple of this type of equaiion is the complete
cubic eqq%;on

24 nl +pztg =0

.”\$~
He\rexve put ¥1(z1) = p; ¥»(2) = ¢ This gives two uniform, straight
ling seales. For the points of the binary scale, we must set

'00\.0
a\Y4 _ wals 4 2) 3 2 _ Gl , 20
\3 “ 5_%(23:24)’ z_{_m_-soa(zS:z‘l)_"a-
This gives
gy = g = Lt
x %—I—f-z’ y_%_——l_-l-"z_'

The curves z = ¢ are parallel to the pand ¢ scales, which have uniform
scales for n. The eurves n = £ are easily constructed, starting from
the curve drawn in the preceding nomogram for # = 0, Such & nomo-
gram is represented in Fig. 16.
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\f N NOTES
1, Schwerdt, Befibuch der Nomographie (Berlin, 1924), Art. 12. _
2. For e/ Massau, Intégration graphigue (Paris-Liége, 1886); d'Ocagne, Traité

i H hie, un trailé

de Nomographse, lst ed. (Paris, 1800), 2nd ed. (1921); Sorr.eau, N omographie, un 1
des Abaguée{Paris, 1921} ; Schw;rdt, Lehrbuch der Nomographis auf ahbildungsgeometrischer
Grundlage (Berlin, 1924). _

3\Sthwerdt, Zeits. f. angew. Math. u. Mech., IV (1924). p. 314.
\4- Gronwall, Jowrnal de Math. pures ot appl. 8 (1912}, p- _59. o ) s

5. Petry, Angewondte Mechanih. German edition by Schick (Leipzig, 1908), p.
and p. 430,

8. Cf. Dobbeler, Zeils. . angew. Math. u. Mech. VI (1927), p. 485.

6. Calculating Machines®.

1. The caleulating tools previously described produce resulis that c_on;
tain s predictable error. However, they are satisfactory for most practical
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cases where the basic values are obtained by observation or measurement.
The selection among these tools is determined by the requirement that
the error introduced by the approximate caleulation should not sig-
nificantly increase the error of the result that is due to errors in the basie
values.

By contrast, the accuracy of a computation on a properly designed
calculating machine is limited only by the errors introduced from rounding
of the right-hand digits in cases where the registers are not of suffieieht>
eapacity to show exact amounts. N

The popularity of the calenlating machine for mathenmtiqaﬂ.‘\fdrk,
however, rests cven more on other considerations than on jts}nherent
aceuracy. It is well within the capability of the modern autemdtic caleu-
lator to multiply four-digit factors averaging 5's in less th.:-m folr seconds,
which time includes that required for setting up the anieunts and for re-
conditioning the caleulator so it may accept a similarvproblem. Division
of similar amounts, with quotient developed to fpsq figures averaging 5%,
takes about six seconds. This time likewise incluﬁ‘es’ that for figure entry
and reconditioning to repeat. The calculations require s minimum of
manual effort, results appear pointed off by décimal and, for many types
of work, self-checking routines may be,ised which eliminate need of re-
peating the caleulation to insure that no‘error of entry was made.

Caleulating machines of the typgs Hustrated herein which are generaily
used in mathematical work, perform’all caleulations by the rapid repeated
addition or subtraction of the mount placed in a set-up Inechanism or
keyboard (SMA). 4 \

Figa. 17, 18 and 19 Show three currently available American models
that feature fully sutematic multiplication snd division. They also per-
form addition and’subtraction and have sufficient. capacify (at least
.10 x 10 x 20) to enable advantage to be taken of the numerous combination
techniques 1até0'$o be described. The parts are lettered to correspond with
the descripive'references in the text.

2. Multiplication comprises adding the amount set up in the keyboard
(SM{&)j sticeessively in the various carriage positions the number of times
indicated by the digit of the multiplier corresponding to each carriage
position. The partial products accumulate in s Product Register (PR).

Ezxample:

512 x 37 512 is added 3 times with carriage in 2nd bosition 1536
g i 7 13 1 el “ st i 3584

Product register accumulates and shows 18944,
The number of times that the “setup” is added at each position of
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CONTROL THAL FOR SMA FOR SMB

SMA

KQ

\

The MARGHANT

CR No. 2

{ACTS AS CONTROL DIAL
FOR SMB IN NON.
AUTOMATIC OPERATION)

KEY

SMA -SETTING MECHANISM
FOR MULTIPLICANDS, ETC,

SMB - SETTING MECHANISM
FOR MULTIPLIERS

PR- PROEUJCT REGISTER
CR - COUNTING REGISTER

F1aa, 17, 18 and 19.
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the ecarriage is shown in a Counting Register (CR). In the above
cage, it would show 37.

Division is the reverse process in which the dividend is first set up in
the keyboard (S8MA) and transferred to the Product Register (PR} usually
by a touch on the Add Bar. The divisor is then set up in the keyboard
(SMA), carrisge 18 next shifted until leftmost figures of dividend and
divisor are in line, and upon depression of division key the maching'sub-
tracts the divisor until the portion of the dividend directly above the divisor
is reduced to an amount less than the divisor. The carriage then\amtorati-
cally shifts one position ta the left and the process is repeatqd} ete.

~

Ezample: ) N
512 + 37 = 13.83 g—g 512.00 N
37 Subiratt I time
: 142 N0
37 N’\’Subtract 3 times
30
. \37 Bubtract 8 times
T
W%\ _ 37 SBubtract 3 times
AN .20 Remainder.

N 2§

The counting register {€&R) shows the number of subtractions in the
various positions ofthe carriage as the desired quotient (13.83),
and the Remaindér(29) which appears in PR, being more than one-
hali of the divislm’?), indicates that the final digit should be rounded

upward; the gubtient is thus 13.84—, to four figures.

Modern e,%i:fﬁl\*ically operated calculators perform the above basic com-
putationgﬁqn, their combinations with & minimum of effort on the part
of the dbperator because it is now customary for many of the clearances,
shith.s,ft ulatiens, ete., to be more or less completely automatie and to
re%re no attention by the operator. '

. ounts also may be expanded in integer powers or roots obtained

N\ Py suitable combinations of the basic methods; and, aided somewhat by
split keyboard or produet registers, different operations often may be
performed at each end of the machine.

The most frequently used special procedures for mathematical work are
described in & later portion of this article.

3. The machine parts and their functions are deseribed as follows:

SMA-—The principal Set-up Mechanism, in all cases a 90-key keyboard
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(on 10-bank models): The Marchant (Fig. 17) has a control
dial which shows figures corresponding to the setip. The Monroe
(Fig. 18) {acilitates verification of entry by means of a ring-
shadow effect produced by the diameter of the key top being
substantially less than the diameter of the opering in which it
recedes.
8MB—the Set-up Mechanism for Entry of Multiplier: The Friden
(Fig. 19} uses a group of ten keys with a control dial. During
multiplication, the figures disappear successively from the control
dial and reappear in the Counting Register (CR). The Maréhank
uses a single-row multiplier keyboard of ten keys. Inasmuch as
it multiplies simultaneously with fizure entry, the™Eounting
Register (CR)} is also the control dial. The Marchant multiplier
keyboard is so designed that it will accept éntry of a digit in
advance of the one by which the machine ig\multiplying. The
Monrce uses the same keyboard for entering multiplicands and
multipliers; i.e., SMA is also SMB. As the multiplier is entered
firat, it is stored internally while the k:e}boa.rd is being used for
entry of multiplicand {as SMA). Alrécently introduced Monroe
(vot illustrated) has a control dial that shows the stored multi-
plier. N
PR— The Product Register hasybeén previously deseribed. It shows
produets in multiplication, sums in addition, differences in sub-
traction, and the gii’q’idend and remainder in division. ’l_‘he
Marchant and Montge models shown in Figs. 17 and 18 provide
tens carry-over iththe product register to the extreme limit of the
number of digls. This is effective regardless of the position of
the can-iagexoﬁ the Friden, entries may be made in PR by means
of thurgh-wheels attached to the individual dials. ' o
CR~ The Gefnting Register, which shows multipliers in multipliea-
’r.io;%Quotients in division, or count of items in addition or
dubtraction: The Friden and Marchant have single CR’s with
/ens carry-over. The Monroe model shown has two CR’s, the
™\ one at the right having tens carry-over. The left-hand CR shows
" individual quotients and multipliers in positive form regardless
of the direction of rotation, this being accoraplished })y use of
dials having 19 figures—nine each way from 0. The :ng?:lt—ha,nd
CR on the Monroe may be used to a.ccuml_ﬂ&tﬂ quotients or
muitipliers. The showing of individual quotients and the ac-
cumulated sum of a series of them is not limited, however, to
caloulators with double CR’s, though capacity 1s somewhat re-
duced by use of alternate procedures. .
. Thereya.re technical diﬁgrences in the models with respect to
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the means of reversing the direction of rotation of CR relative
to that of PR to accommedate them to the conditions in which
division follows multiplcation, and vice-versa. Any other re-
versal, such as for the purpose of registering the eomplement of
a multiplier or quotient or of accurnulating multipliers or que-
tients negatively, is ususlly done by means of a manually
operated Counter Control. : A

C8M—Constant Btorage Mechanism-~—found only on the Monroe model
shown: It provides means for internal storage of a ¢bustant
multiplier. Transfer of an amount to it is made aftenthe said
amount has previously been transferred to the internalmultiplier
storage referred to under the heading “SMB”, {he Friden and
Marchant do not require internal storage of 4 Constant because
their SMA’s and 8MB’s are separate and \distinet. On them, the
eonstant may be set up in SMA and thejiddividual multipliers
in 8MB. A\

The use of an internal C8M enaliles/the calculator to be used
independently of the constant t6{perform a multiplication that
does not involve the constant\ However, having the constant
set up as a multiplicand, ag%on’caleulstors without the internal
storage mechanism, instead, of as a multiplier, often reduces the
time of a computation bécause in most work involving a constant
the number of multiplier digits is less than the number of digits
used in the consf@ét.

Calculators for ma a'n’atical work preferably should have tens carry-
over in the dials of hoth PR and CR to the full extent of the registers,
regardless of carrigge-position. Though this feature may not be necessary
for single multiplicaions if carriage moves toward the right, it is important
i products, .{n‘ﬁlﬁpliers or quotients are to be accumulated.

The m&?yér in which the fundamental operations of multiplication,
divisio:;,’ dition, and subtraction are performed by the various models
shm'v.s’ “many differences, which are best described by manufacturers’
catalogs. Improvements that reduce the time for & complete caleulating

Seyele “from clearance to clearance,” that assure better accuracy control,
or that simplify the operational procedure, gre constantly being made.

4. As procedures for normal and accumudative multiplication and divi-
ston, as well as for addition and subtraction, are adequately described in
manufacturers’ booklets, this section is limited to the description of some
little known applications that sy be used to advantage in mathematical
work. The techniques are described in a manner that admits of their
application to any of the usnal machines, Theugh it might appear that
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some of these methods would require more time than ordinary procedures,
this is not the case. Each method offers either a marked reduction of time
© or an improvement in accuracy control by reason of elimination of copying
the results of intermediate steps. Except in cases where the proof is obvious,
the mathematieal hasis is shown, For this, the following symbols are used:

***g —The amount “a” entered (or appearing) at right of any setting
mechanism or register.

a*** —Bame as above, except at left.

o+ _Bame as above, exeept centrally located., N

In & few cases, the procedure is also exemplified by a numerieal examyple
having mathematical significance. A

Instructions for the methods are presumed to be applied 18 ealoulating
machines which have a capacity of not less than ten figuresin CR, SMA

and SMB, and of not less than twenty figures in PR.

5. Developing formulas: The usual procedure fdi\\solﬁng aXbXef
m X X pete., ig, first, to evaluate the denominhtf)r by setting m in BMA,
multiplying by n, then entering mn in BMA, ;nult‘iplying by », and copying
mnp from PR to work sheet. Becondly, ahéis"similarly formed and mnp is
reset in SMA from the work sheet. Depréssion of division key registers the
desired amount in CR. o N

This method has the disadvantage' that the group produets are often
so laxge that a single decimal séthing will not suffice to carry the work to
its eonclusion. There is also j‘.hE possibility of error when copying mnp to
work sheet and re-entering s SMA.

When the result is desiréd to no more signifieant figures than may F)e
provided by a reasofigble portion of the capacity of SMA, these dis-
advantages may bé ‘awoided by the method of partial quotients; thus,

(1) Betup win8MA and multiply by b; (2) set up m in SMA and divide,
thus i§!ﬁjng ab/m in CR; (3) set up ¢ in SMA, set, reverse for_- CR
and'j:multiply by amount appearing in CR, which reduces it to

/ger0s; this forms abe/m in PR. (4) Set up n in SMA and divide,

{ "\ Yroducing abe/mn in CR; (5) set up 1 in SMA, set reverse for CR

and multiply s in step (3); this transfers the amount from CR to

PR. (6) Set up p in SMA and divide, thus producing the desired
result in CR.

By selecting the factors to be used in each step S0 that the suclcessive
amounts which develop in PR will be of approximately the same ?;lhﬁthé
the result may usually be obtained to the number of figures desired withou

loss of precision, and within the limitations of a single setting of decimals.
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6. Three-Factor Multiplication: The usual procedure for solvinga X b X ¢
is well understood. However, if the sum of the number of digits in q, 3,
and ¢ does not exceed the capacity of SMA, the following procedure is
effective, particularly if it a series of such multiplications ¢ is constant:

{1} Set up e at left of SMA, b at extreme right, and multiply at right of
CR by ¢; (2} clear b from SMA at right and, by poesitive and negative
multiplication, adjust CR so it reads same as bc that is st rigm of

PR. PR at left shows abe. \\\
Proof: SMA CR Iinor’ms
1 (g% Fxrp)  (w¥kg) = *rged* ) LTI
2 (a*** ) #RE(Be — ) = **»(abc' — ag)**
&
PR accumulafes\’ **abe*+ *EEpp

A recently introduced Monree (not Hlustyated) facilitates this caleula-
tion, as well as those with more factors, b wse of mechanieal means for
transferring amounts from PR 1o SMALK)

7. Aceumulation of Products of\ifkree-Factor Multiplications: A modi-
fication of the proeedure just degeribed which also permits summing the
products of successive thrce~f§qctﬂi' multiplications, is as follows:

(1) Set up o at right of §MA. and multiply a¢ right of CR by &.

(2) Clear SMA and 381%’ set up ¢ at left of SMA, reducing the right-
hand digit by{the fmount of 1; also set a row of 9's in SMA at right
of ¢, to thedextreme right limit of SMA.,

(8) Multiply,at-right of CR by ab which appears directly adjacent in
PR. PR\at left shows gbe. PR st right is thus cleared so it may
cm%\t.s%hq ‘the “ab” from the second problem of the series.

Theabove procedure applies oaly when the number of digits in a, &
and ¢'of the first set of factors does not exceed the capacity of SMA; and
sitnilarly with respect to subsequent sets, subject to further ocbvious

*"~{imitaﬁons upon them with regard to the relation of digits to deecimal.

Prooi: BMA CR PR forms
1 { - ¥y (TR = wEEL L
2__3 {cﬂlﬂk* wH 1) (t**ab) - **abc** dkk ab

PR aceumulates *Eghett  BEH()
and so on, accumulating ¥ Tabe**,

8. {(a -+ bx) When a and b are Constants and x is Varighle:
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(1) Enter @ in PR by means of SMA; set up » in SMA and multiply by
- first z which produces first value in PR; (2) without elearing, and
. by positive and negative multiplication, adjust CR so it reads the
next z. The corresponding value of the expression appears in PR.
By an analogous process (@ — bx) may be evaluated.

This applieation is extensively used in the prepsration of many types
of actuarial tabies. See Sec. 9 for another example.

9. {ab + o) Factors Not Exceeding 3 Digits Each. This method is partic-

ulatly useful when @ and/or ¢ is constant: S

(1) Set up a at left of SMA and ¢ at right; (2) multiply by ¢'at Teft of
CR and by & at right of CR. Central portion of PR skows desired
result, An obvious space-relationship of the iactmjg,(wifh reference
to pre-set decimals is necessary. )

Proof:  SMA CR A\JPR forms
1 (aF%* *HkG)  (grir ) = ad"'\** ok gk
1 (ahex wExg) ) BN Ak *E KD

PR accumu]a,t;es‘: Y ad**E Fx(gh + od)** **%bg,

A frequent use of this method is foi‘léﬁb-tabulation, using interpolation
formulas of types similar to® -

) flz) = o) + oty + B + 81 + B &%
in which f{z), known for xo\&]d x, ,1s to be subtabulated_at h—1 in?er-
mediate values, or at 'ght:e'points %y + Bz, — %oy in which n comprises

integer multiples ob\IfA; e.g., if the interval is to be subtabulated to
tenths, n will asume/values 0.1, 0.2, 0.3 --- 0.9. Also &i, (85 + )
and 8{%% are 1st"9nd and 3rd central differences of f(x) corresponding to
end values zpand z, ; the latter two diffcrences are set up in SM{& as
“4” and f"c?’ in the method above. BY and B! are Bessel coefficients
cnnwespoi}’d‘iflg to each n; these are used as variable multiplicrs_ “p and
“@" “éipectively, producing the sum of the last two terms in central
portion of PR for each z. ' .
The first, two terms of the above formula may be evaluated by applying
the method of Sec. 8 for each #, after which the previously tabulated cor-
rections, comprising the total of the last two terms obtained by applying
the method of this section may be added (or subtracted) to produce
the desired intermediate value. A continuous operation for all values of
# results by applying the following:

With carriage at extreme right, f(z,) is entered at right of SMA and
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added into PR. Next, §{,, is entered in SMA in decimal relationship to
Fl{zg) in PR, and multiplication is made by the first n, which forms the
first f{zs) + n8i,2 in PR. The corresponding previously tabulated corree-
tion-increment (total of last two terms) is then entered in SMA at its
left without disturbing 8{,, which remains as a constant at right of SMA.
Carriage is then ehifted to left sufficiently to enable the correction-in-
-crement to be added (or subtracted), thus forming the desired value in
PR. After copying, the last step is reversed, thus restoring f, + nabg in
PR. BMA at left only is then cleared of the correction incrementaCarriage
is then shifted to right and computation of next value is made Ws'in Sec.
8 by building # in CR to its next higher value, and so on fer'all n's.
This combination of methods to facilitate sub-tabulation has obvious
limitations, but it serves well when the sum of the digits' in coefficients
B” and B"' does not exceed six, and similarly forthe corresponding 2nd
and 3rd differences, Furthermore, by use of the‘Comrie throw-back® for
modifying 2nd differences, 4th differences ma; lso be taken into aceount
if they do not exceed 1000 in units of last pice. The remsining part of
the combined operation is effective if theEumm of the digits in 5, and the
correetion-increment does not exceed n}né. No limit is placed upon the
number of digits in f{z} because nounore of them need be used than con-
tained in 8, . : Ry

10. (ab -~ ed) Subject to ﬂs‘mi‘far Conditions as in the Preceding:

(1) Bet up a at left of}.‘fsMA and e at right; (2) Reverse CR and sub-
tractively multiply’ by d at left of CR; (8) disable reverse of CR
and multiply by & at right of CR. Central portion of PR shows

degired regilt
Proof: () 'SMA CR PR forms
.l;‘\(a*** #HEp) (—d*s® ) = —gd*** LA L L
§“ (a*** ***c) ( ***b) = ’ **+ab"‘* L
) .\': » PR acoumulates  —ad*** **(gh — o) ¥* EEh,

s
h

' 11. Evaluation of a Polynominl by Synthetic Substitution:

The weli-known synthetic-division method of obtaining the numerical
value of a polynemial in = when x has a value #; becomes a continuous
process on the caleulator which upon completion shows the desired value
in PR. If certain intermediate smounts are copied during the process, a
second polynomial in z of one degree less is obtained, it being the quotient,
omitting remainder, of the origiral polynomial when divided byz—m .
Evaluation of this second polynomial by the same means as employed
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for the firsi obtains the numerieal value of the first derivative of the
original when z = =z, .

The method has wide application, particularly for obta.mmg corrections
of approximate Toots of funetions that are polynemials.*

Ezample: Evaluate the polynomial - -+ ex* + dz® + ¢ + bz + @,
when # = , . (1) Set ¢ in SMA and multiply by =, producing ez in
PR; (2) change SMA to d and add, producing ex + d in PR; (3),
transfer this a.mount from PR te SMA, clear PR and multiply by z,
producmg ex® 4+ dx in PR; (4) change SMA to ¢ and add, producing
er’ + dx + ¢ in PR; (5) transfer this amount. from PR to. S’\’IA
clear PR and multiply by z, producing ex + dz* + exin PR (6}
change SMA to b and add, producmg ex’ + d=* + cz{ in PR;
(7 transfer this amoun’r. from PR to SMA, clear PR Janid ‘multiply
by =z, producing ex* + dz° + e” + bx in PR; (8), change SMA to a
and add producing the desired value in PR.

If any term is minus, subtract instead of addmf;\\n steps 2, 4, 6. If the
assumed x, is minus, change signs of terms ha\ung odd powers of x and
multiply as if #, were plus. If any term gh ) is absent, follow method
exactly but consider its coefficient as 0 .If PR shows a pegative amount
as indicated by its being preceded by, @%) transfer it to 8MA in steps 3, 5,
7 in its negative form. The product'resulting from the subsequent multi-
plication by 2, will be in negativeform but 9’s will not extend to extreme
left of PR. In this case, it is adbisable to have the %'s extend considerably
toward the left end of PR 2}‘]:13 may be accomplished by suitable entry
of ¥'s in SMA, earriagdghift to right, followed by adding.

If the PR readingshat end of steps 2, 4, 6 are copied and preceded by e,
they are the coeﬁ’iclcnts of the above-men‘smned polynomial of one degree
less, to which npphcatlon of the method above evaluates the first deriva-
tive of the orlgﬁsal polynomial when z = =z, .

This method of evaluating a polynomial and its first derivative is
generally\ao he recommended when 2, has several digits. If 2, is an integer,
it is ea&ler to obtain the powers of ¢, from tgble and apply aceumulative

.multaphcatmn The derivative in such case similarly may be evaluated
frém the pelynomial obtained by differentiating #he original polynomial.

12. Summations of Two-Digit Paired “Scores” Obtaining 2 a, 2.b,
3 a®, 3 b% 3 2ab; a frequent applieation in statistical mathematics.

{a) On single-keyboard caleulators (SMA only) with squaring attach-
ment:

(1) Set up first a and b at left and right of SMA, respectively, depress
bar that sets amount into storage yet permits setting to remain in
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SMA; (2) depress Start Key, after which a and b appear at left
and right of CR. PR shows, from left to right, a* 2ab, b%. Without
clearing, repeat for next pair of seores, and so on.

{b) On double-keyboard ealeulators (SMA and SMB):

Multiplication similar to that of the preceding requires second entry
of ¢ and b in SMB. If these amounts are read from the eontrol dial of
SMA, on models equipped with this feature, instead of from the woxk,
a subsequent summing of 3 a and Y b from the work to check\Y a
and > b that appear in CR substantially proves accuraey of all cal-
culator entries, thus avoiding need of applying other means of ‘checking
such as the Charlier Check. This same method of proof.niay be utilized
in the case of method of 12a. N\

Proof:  SMA CR ERorms
1 .(au:* ***b) (a**:s. ) = as‘*** *E R E
1 (gh¥* *EAB) ( "‘"‘*b) = '\\.""*ab** kxkp2

S -
By repeating, PR accurfiulates ~ JUgh##* #x3 ggp*+ *ae3

13. Same as above —with three-digit "‘{éco;es"': :
By following the procedure outlined in Sec. 14, below, and first obtaining

26, 2.a°, 2ab; then repeating and obtaining b, Db and Y ab, the
equality of > ab obtained from®each seciion of the work substantiaily
proves all entries, provided\the entries into CR in all cases are made
from the control dial of S\M’ instead of from the work.

14, Summations oftwe or three-digit paired “scores” obtaining >, 3.4,

and 2 ab; s frque.nt application in conncetion with obtaining a least-
squares line of §'ent =, or z on y;

/N

(1) Set y}iﬁrst b at left and corresponding e at right of SMA and
. g;\}l{jply at right of CR by @ (on caleulators with Control Dial for
+SMA, read amount from the dial instead of from the work). (2} Re-

peat for next set of scores, producing 3 ab at left and >a’ at

right of PR and X"a in CR. Subsequent summing of @ from work
to check 3 a in CR substentially proves both entries of 4. No check
is had -of entry of b except that provided by control dial. Witk
three-digit scores, this process will only sum about 40 pairs, though
by noting on paper the carry-over into the figures already at left

on Pl;t, a good operator may handle ten times this number of seores.

roof:

1 (b*** ***a) ( ***a) = **ab** ***as
By repeating PR accumulates  **3 g+ *E23 g7,

N
\"
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15. Multiplicatioh of Amounis Which Exceed Capacity of Caleulalor:

A long ameunt, such as 345 678 901 234 567 is regarded as made up of
two components 345 678 901 200 000 = ¢, and 34 567 = &, the whole
amount being a -} b. Similarly, the multiplier is split as ¢ + & The de-
sired produet ac -+ be + ad 4 bd has all factors within the capacity of
the caleulator. Often be + ad may be accumulated in PR.

16, Evaluation of a Negalive Amouni: Q)

Amounts in complementary form; i.¢., which appear in PR preceded by
s, may be converied to positive form by setting up the same negaﬁve
amount in SMA and spacing carriage s0 a subtraction would, ﬁroduce
geros in PR. However, instead of subtracting, negatively n)u]hp]y by 2,
which causes the positive form of the amount to appear lrrPR

\
Proof:  SMA CR PR shod@y® *** _a

(% — @) (¥ — 9) PR fog’ms L

v/

’ Pﬁﬁémmulates *E g,

17, Division of ¢ N egatwe Amount:

Negative amounts in PR may be‘dv?lded directly without its being
necessary to convert them to pogxt;ve form. On caleulators with tens
carry-over in CR and with provigien for automatic reverse of CR upon
depression of division key, proeced as follows:

{1) Set up divisor so oi%};%ft-hand digit is below first significant digit
in PR that is at\ﬁht of ¥'a. (2) Multiply by any amount that will
cause dlsappeamnce of ¥'s. (8) Manually reverse CR witk respect
to PR; (4) (Without clearing CR, depress division key, producing
the deg}\ed ‘yuotient in CR,

’é;’la which do not have automatic reversal of CR upon depres-
sion.phhvision key, omit step 3, or otherwise divide by subtraction.
Prgof: To find | a/b | when given —a in PR.

2\ ) Let ¢ = the integer multiplier that clears the 9%

\ )

SMA CR PR shows (—a*** )
12 (e ) (*** ) — PRforms (be*** )
PR secoumulates [(be — a)**** ].

3-¢ By division, CR forms - (bc — a)/b which aceumulates to the ¢
that it already contains, producing [¢ — (be — &)/b] **** =
|a/b].
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If, for example, PR shows .-« 9009432 (= —568), which it is desired
te divide by 202, the process produces

—568 + (3 X 202) . o
3 - 203 = | 2.81188 + |

. The reslt is the same even if there is an over-count when clearing the 9’s.

568
202 °

18. Division when Dividend Exceeds Capacily of SMA and Quofient
Desired to More Places than Available in CR: R

Assuming that dividend is within the capacity of PR, it i4 éntered

_ therein by suitable setups in SMA, shifts, and add-bar depressiéns. Divisor

is then set up at extreme left of SMA. Division produces:w’:, Dy

L 3

a p%7 2
(2} B = Qm + B 'M'\\

in which @, is the quotient to ten figures (it m{y.show only nine) and &
is the remainder in PR. The calculator is clearGihand R/b is then obtained
to nine or ten figures. Affixing the figures qf'fﬁhé’ new quotient to @, gives
the desired quotient to at least 18 or 10 digits.

If a longer quotient is desired, split the dividend into parts g and b,
a9 in Bec. 15, divide each separately by the divisor, ¢; extend each quotient
by again dividing the rcmainders, as above. The desired quotient is
a’t + b/ec. N\

If the dividend may be dontained within PR and quotient iz desired
only to & few more placgs}han the capacity of CR, the process may be

7

shortened as follows: \\ N

(1) By suitable gif];ries in SMA and carriage shifts, transfer entire divi-
dend to BROA2) Bet up divisor at extreme left of SMA and divide
as far.as;CR permits. (3) Record quotient thus far and clear CR.
(4) Bhift carriage to right just sufficient to make room for the
des&l extra figures of quotient. (5) Clear SMA and reset as nany

+ofthe leftmost figures of diviser as may be accommodated in SMA

N directly below the Remainder in PR, and divide, which produces

\’“\; * the desired extra figures of quotient in CR.
This abbreviated method applies only if the number of digits of
divisor reset in step 5 equals or exeeeds the number of digits of
quotient that are desired in excess of the capacity of CR.

EBzample: Find to 14 places 123456789008765/4567890987.
Btep 2 develops quotient 27027.0874 1594487362/4567890987.
The remainder fraction is then evaluated by steps 4 and 5 as
1594437362/45679 = 34905 --- which, when affixed gives desired
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guotient as 27027.087434905 + with uncertsinty in the final digit
because quotient was taken to number of places equal to those of
the divisor. In this ¢case the final digit is correct.

19. Division when Divisor Ezceeds Capacity of SMA and Quotient 4s
Desired to More Places than Available in CR:

Applying method of Bec. 15, multiply dividend by reciproeal B of divisor
N. B, to any desired precision, is obtained by applying suceessively &\

R, = R(2 — NR,), witherrore, = —N&. \
¢\

R, should be the reciprocal of first ten figures of N. In evaluating this
iterstion, only multiplication by method of Sec. 15 need bQ employed
Convergence is rapid. AN
N

20, When only slow-speed hand-driven caleulaters) were available,
numerous methods of solving ab/c were in use whiel embodied dividing
simultaneously with multlplymg With modern\High-speed automatic
calenlators, # iz wsually easier to form ab and\t.hen set up ¢ and divide
than it is to use these special methods fory references to which see manu-
facturers’ ingtructions. A similar applieation’is that of forming two related
quotients stmultaneously, as below Thé method i in extensive -com-
mereial use.

(a) To split an amount proportmnately into two paits; ie., a/b p g
and (b — a)/b X ¢; & < b, the'procedure is as follows:

(1) Bet up “17 at e)gtreh;é right of SMA and @ as close to left of SMA
ag possible, yet Sb\}‘hat b may be subsequently set in SMA in the
same decimal relat.ionshlp as a; (2) Multiply at right of CR by ¢;
(8) Change &6tup at left of SMA from q to b, clear CR and divide.
This prpd{lces {a/b) X ¢in CR and [(b — a)/b] X c at right of PR.

The s Zt;j\f,he number of digits of @ (of b) and ¢ should not exceed the
capaclty\bf MA, and the quotient CR should not be developed to more
chgﬂ;s ‘than capacity of SMA less digits of a (or b) and ¢,

p “Pmof SMA CR PR
\ ] 2 (a*$* ***1) ( ***c) - (**ac** ***c)
PR SMA ChR PR
3_ (**M** ***c) - (b*** ***1) j— ( EX T ac/b)

and { ***¢ — {ac)/b).

The expression at right of PR = (b — a}e)/b.
Subject to certain limits on capacity, this method may be adapted to
cases where o exeeeds b. However, because the resuli at right of PR



60 . PRACITCAL ANALY\SIS

appears 83 & negative amount and must be so evaluated, this modifica-
tion has limifed practical applicatior.

21. Tteration methods of extracting square and cube roots on ealeu-
lating machines have largely superseded direct computation in cases of
mathematical work. For squnare root, the hasic application arises from
the fact that dividing the number of which the square root is desired by
an approximate root, and then obtaining the mean of divisor and quotieént,
gives & second approximation of the root substantially to twice ag many
figures as were eorrect in the first approximation; that is to say,z \\

N\
Let ¥ = Number whose square root is desireds
and N 4- ¢ = First approximation of square root,
then, N/(N'® + ¢) = N*® — ¢ + e"/N"”\.—f;- ; :
and the mean of divisor and quotient is N** +_ e&/3N"* ... which, if
taken as a second appreximation of the rcot, ‘error of second order
as compared with that of the first approximatich,

Because ¢ is always positive, the second approximation will tend to be
too great numerically, so that if the first gﬁprb:dlnation contains n figures
and the 2nth figure of the quotient ig gdd; it should be diminished by 1
before dividing by 2.% N

If the first approximate root is obthined from a good 25 ¢m shide-rule,
the combined error of setting theFanner on Seale A and reading from it to
Scale I is generally such thihafter applying the division process of the
calculator, the resulting seeond approximation of the root will be correct
to five figures if the root\l'@.&i’n the upper portion of the rule, or to six figures
if it lies in the central otMower portions.

Simplification of Sfinding mean of divisor and quotient, Is provided by
use of Table (1), \dGé to H. T. Avery, which shows for selected arguments
the significantfigtires of double square-roots for each argument and for
an argumedt\tén {imes greater. Arguments are so chosen that the ap-
proximg&ﬁbb found by use of Table is in error not exceeding 5 in sixth
Place, his giving “five-place aceuracy,” as ordinarily defined. The five-
figure root may then readily be converted to one of ten figures by applying
&b Hean-of-quotient-and-divisor process, as previously deseribed.

Further refinement may he made by repeating the process, or more
simply by determining the error of the ten-figure root; e.g., if B is the ten-
figare root, (= N'* + ¢), its error, ¢ is closely

2z
€= &WN*; and Nt=R —,

{a) The following is the method to be used in finding five-figure square

root of N from Table (1), page 69:;
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(1) Set up the significant ﬁgures of N at left of SMA and, with CR
shifted to permit at lesst six quotient figures, transfer N to PR
(2) In SMA, directly below the leftmost figures of & that appesr
in PR, set up from Col. A of Table (1) the number nearest to the
three leftmost figures of N and add into PR, which then approxi-
mates 2; (3) Divide this sum by the amount in Col. 1 or Col. 2
opposite the number selected from Col. A, using Col. 1 if there is,
an odd number of digits before the deeimal point in N (or an odd
number of zeros immediately following the decimal), and using
Col. 2 if an even number. These divisors are the mgmﬁ{:ant ﬁgures
of twice the square roots of the numbers in Col, A

The root appears in CR as quctlent there being one ngrt of root each

way from decimal for each pair of digits in the nmnbe:;\qi‘whlch root is
desired.

Ezamples: / \\ b
Find the square root of 5331.172. NN
Point off in pairs, thus: ‘53'81'17°20) %o divisor is selected from
CO}. 2 ».’"
The oot is ™ 5331172
O 530

. 1456022/10631172
4 equals  73015-.-
which is pointed og as 73.015.
Find the square 1:0}s of .0005331172.
Point off info pairs, thus: ,00°05'33'11°72, so divisor is selected from

Col. 1. \"
K22 The root is 5331172
\\ 530
N\ 4604346/10631172
A\ equals  23089...

Mf w w]nch is pointed off as 023089,

Proof: Let N = Number of which square root is desired and ¥ is be-
tween values 10,0 and 99.9, or multiples thereof by 100. This range

. controls the construction of the table within the given assumptions.

8 = Difference hetween the leftmost three digits of & and Nearest
Number from Col. A when the latter is taken in the sense that it
represents the range of numbers from 10.0 to 99.9; ie, if N =
27.8327, then from Col. A, 6 = 27.9 — 27.8327 = 0.0673.
= Frror of the square root for 5-place accuracy, as defined; ie.,
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< 4=0.00005 for N’s in the range 10.0 to 99.9, the 6-place roots of
which will be from 10'* 4 eto 10 & &

Then, by the process

2N 4 & 3 . .
4 ——— = N . being less than 5 in 6th place.)
4) S + o) + e (e being P

From which, negleeting minor terms
(8) & =8N"% orwhen e = 0.00005, * < 0.0004 N°%, or 3 <002 N,

The total interval between N’s in Col. A, considered in th\e sense that
they represent the range 10.0 to 99.9, is 25. The table_,is}built upon this
basis with some leeway to allow for the effect of the minor terms and to
reduce uncertainty in the last digit of the 5-figure roq&b%cause of rounding.

Ezamgple: In the vicinity of ¥ = 81, & should be <0.02 X §1%* =
<0.54 and the taebular interval <1.08. QQLA in the vieinity of 810,
shows tabular interval of 10, which, being less than 10.8, satisfies
the condition. \9;

Q!

22. Cube root may be extracted: é}fmilarly 16 square root when an ap-
proximate root is known. If & is{le number of which cube root is desired,
and N'* + ¢, = R, an approgimate oot correct to n figures, then a root
substantially correct to 2n'ﬁgurés, R, , is obtained by

N 4 2R}

(©) R i{%@% + 2R,) ; or 3

Table 2, page 71 Jacilitates this computation when obitaining cube roots

with error not\eéxteeding 5 in sixth place; ie., for 5-place accuracy as

ordinarily définéd. This table, due to H. T. Avery, shows the significant

figures of 8N when N is taken from Col. A as the amounts shown or 85

1/10 orly100 thereof. The 5-figure root thus obtained may be extended

to ong of ten figures by applying the above formula for B,, . If B is &
betsfigure root (=N 4 &), its error e is closely

) 3 . 3 __
\ e = }_B.a_J.RTA_r; and NV B .

23. Finding Five-Figure Cube Root of N from Table 2, page 71:

(1) Set up the significant figures of N at left of SMA and, with CR
shifted to permit at least six quotient figures, transfer & to PR;
(2) In 8MA, directly below the leftmost figures of N that sppear
in PR, set up from Col. A of Table (2) the number nearest to the
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three leftmost figures of ¥ and multiply by 2, which causes PR to
show an amount approximating 3A; (3) Divide this sum by the
factor in Cols. 1, 2 or 3 opposite the number selected from Col. A,
using Col. 1 if, when ¥ is pointed off in groups of three each way
from decimal, there is one figure in the leftmost group. Similarly,
select divisor from Col. 2 if the leftmost group contains two figures,
or from Col. 3 H it contains three figures. These divizsor factors are
the significant figures of 3¥*? when N is taken from Col. A in*the®
sense of being equal to, 1/10, or 1/100 thereof, for Cols, 3 2~ and
1, respectively. A
The root appears in CR as quotient, there being one digit. of oot each
way from decimal for each group of three digits in the numhei- of which
root is desived. RS

Ezample: Find cube root of 5331.172.
Point off in groups of three, thus: 5331, 17\2‘ so divisor iz selected
from Col. 1. NV

The rool is A \/5331172
®") . 535
N 535
_o\D17678/16031172
3 equals 17469 - -
whieh s pointed off as 17.469.
Bxample: Find .cl,@e. roct of .0005331172,

Point off in groups of three, thus: .(000'538'117'2, so divisor is selected

from Col. 8. 70>
N The root is 5331172
"\":.\ Mo 535
\ ; 535
N 836
R\ 1977078/16031172
AN equals 81085 --
"\; / which is pointed off as 0.081085.

Proof: In a similar manner and with nomenclature similar to that for
proving the Square Root Table (se¢ Sec. 21), the process obtains

3N 4+ 25

3(N + 6}2;‘8

" Expanding and dropping terms containing ¢* and higher, we have
(8) 5 = ON*e,

(7) e Nlﬂ! + £
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As the construction of the table is controlled by the range of ¥'s
from 100 te 1000, and multiples thereof by 1000, N may be taken
as the three-figure numbers in Col. A, N'/? will range from 4.6— %o
9.94-, then, ¢ < 0.00005 if error iz not to exceed 5 in sixth place.
Substituting, we have & <0.0212¥°",

Interval between suecessive N's = 2§, whence 25 < 0.042N"*,

Ezample: In the vicinity of N = 729, 26 < 0.042 X 729°° = 102
It is seen that the tabular interval eontaining 729 is 9, ant\that of

N

the next higher interval is 10. N\

N\

24, The procedures deseribed above may be adapted o, higher roots.
Tables of divisors (or their reciprocals as multipliers)>are not difficult
to compute for use in cases where there is a considera:b]e quantity of such
root extraction. C. 8. Larkey has computed such divisors for fifth root.®
For occasional extraction of higher roots, howg.(er,‘ the logarithmic method

7

is helieved to be more suitable. L

25. Caleulators which multiply by theholding down of a multiplying
bar a sufficient length of time to caude'the desired figure to appear in CR,
a3 welt as Marchant calculators that have automatic multiplication, may
multiply positively in one portied of CR and negatively in another. This
may also be accomplished on the Friden and Monroe calculators with
automatic mu]tiplication’.k{y performing either the positive or negative
multiplication automatiéally and the opposite operation by use of the
multiplying bar. The\q}ethod is exemplified in the following, where the
problem is to find ‘eommon logarithm of decimal fraction raised to a
fractional power{/;"

Exaniple: Find log,, .9754"%°™ (log,, 9754 = 1. 9891828).
(1) Bef)up exponent (.285714) in BMA, and in ‘“unit” position of
CR ‘subtractively multiply by absolute value of the characleristic
~f=1); and ab right of decimal in CR multiply by the mantissa
~ )(:9891828). This produces at right of decimal in PR the mantissa of
N,/ the desired logarithm (.9969094). The characteristic of the desired
logarithm is the complement of the amount at left of decimal of PR.

In this case - --999 is interpreted as T.

26. The?development of balancing techniques is due principaily to L.
J. Comrie.” They have greatly simplified such problems as inverse curvi-
linear interpolation, ete.

To find z in the equation a + bz + J(x)-¢ = m in which f(z) is known
for any value of = (usually from table or curve),
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(1) Betup ain SMA and add into PR; (2) Set up b in SMA and multiply
until PR is close to m, showing in CR & first approximate z, , as
no account has been taken of f(z) ¢; (8) From the known value of
(&), perhaps on another caleulator, separately compute m —
flz) -e; (4) By direct or subtractive multiplieation, adjust CR until
PR is close to m — f(z,) ¢ which was obtaned in step 3, thus show-
ing second approximate z, in CR; (5} In a manner similar to step
3, separately compute m — f(z.):c and continue as ahove gbit
CR shows x to the number of places desired and PR ehows m® —
fiz)-e. In practice, the first approxlma.tlons usually need be’ made
only to a few places.

Ny

It will be-observed that this method “balances™ a + bz and m — f{z)-c,
in conformity with the equality ¢ + bz = m — f(2)-

The following example illustrates the application b the caleulator to
this method, as well a8 its extension to cover anddditional function g(x},
using two caleulators, each developing a single’ s}d’e of the equation.

Ezample: In the following table wiiixx\central differences, find z to
five figures when y = 0.38675. This j& a common problem in inverse

curvﬂi_near interpolation. AN
x Y ,}": . Y
2.0 0.34202(f,) N 103988 31(5,")
15798(5}) —480(3}"} "
3.0 0.50000(f,) (N —1519(5") £5(5).

By the Comr}throw-back the influence of the 4th differences is
taken into ageotnt by modifying the 2nd differences, as below:

) M.{’\:-i-'\M” = (8" + &) — 0.184(3" + 87) = ~0.02672.
T@e Bessel 1nterpolatmn formula applying is:
{10) fo + 08l + BUMY + M) + BYEE =y
~\ which is in the form:
a + zb + f(z)-¢ + glx)-d = m, in which z = n, BY = f(z), and
BY = g(z).
Transposing, we have
an fo + 0¥y = y. — BIY(MY + M) — B8

or, numerically
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(12} 0.34202 + n(0.15798) = 0.38675 — B! (—0.02572) -
BY(—-0.00480).

Applying the methed, and using two ealeulators, one of which evaly-
ates the left and the other the right side of the equation, we have for

nearest two digits in CR ~

First ealculator: :
PR SMA CR PR

Steps 1-2 0.34202 + (0.15798)(0.28) = 0.3:?62544.
First approximate n = 0.28; eorresponding B*’ == —9‘0.5, B = 0007,

It is also noted that B)”8{/f =~ —0.00003, wheh'n = 0.28, so it
is unlikely that any prohable change in n from, it}ﬁrst approximation
of 0.28 would significantly affect BZ’51%2.\Shwuld this not be the
case, it iz advisable to estimate mugh{g;the probable valie of
BY(My' + M) + Brs{}; for n equallfo its first approximation,
thus roughly evaluating the right—ha;:l} side of the equation. Then
adjust CR of first caleulator until it PR equals such value. Its CR
will then show a revised = fromewhich 2 closer B may be obtained,
It is particularly to be desired\fhat the coefficient B’" be entered in
the second caleulator in the:iétep below for as close to its final value
as is possible, thus avoidinglengthy final adjustment of the balaneing.

Second culeulator: 2N\
(\/ PR SMA CR PR

TS
Intermediate,st8p  0.38675 -+ (0.00480)(0.007) = 0.3867836.

NOTE: The sscbna term is entered in the manner to increase reading
of PR' & 'vequired by the signs of its factors in (12).

A\ PR SMA  CR PR
SteR\3- 0 3867836 - (0.02572)(—0.050) = 0.3854976.

mtvn: The second term is entered in a manner to decrease reading of
~O° PR as required by the s1gns of its factors in (12), B” being minus.

\\ ) First caleulator has PR equalized to that of second calculator, thus:

PR SMA CR PR
Step 4 0.3862544 - (0.15798){0.28 to 0.27521) = 0.3854976758.
Second approximate n = 0.27521, corresponding BY = —{1.0499,
B’ unchanged.
Second calculator bas CR altered to new B
PR SMA CR PR

Btep 5 0.3854976 + (0-02572){ —0.050 to —(.0499) = 0.385500172.
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First caleulator has PR equalized to that of second calculator, thus:

Repeat PR _ SMA CR PR
Btep 4 (.3854976758 + (0.15798)(0.27521 t0 0.275226) = 0.385500203.

Third approximate n = 0.27523; B} and B:"” unchanged.

As z, is desired to only five figures (which is as great as permissible
if the tabulated ¥'s have final digits rounded; i.c., with an error of ,
< £0.000005) the desired =, is 2.2752.

27. Building functions by integration from their higher differenceg \\'whe}l
knowing the “lead” value of starting differences of all intermediaté.otders
is particularly within the provinee of some accounting machines’ which
have the property of transferring amounts auvtomatically 4rem ‘one ac-
cumulating register $o another, either additively or suhtwactively. The
National and Underwood aceounting machines are notdhle’in this respect.
However, the rotary ealewlator readily handles numezous problems involv-
ing second differenees. O

W

The method is best shown by an example: )\ QO

x ¥ st diff” 2nd diff.
2.0 7.4079 SN
L 00.073664
2.1 7.4816 N\ .006088
2.2 75614 006211
2.3 eto. 7.6474e0: 006334 ete.

When given the lead vNﬁéé of g, and first difference and second differ-
ence together with the{ églumn of the latter, find the values of the second
integral; i.e., the colaman of y's.

{1) By suitahlje;rr{ea.ns enter leading values in caleulator as follows:

NOTE! T"I}E; ‘entry at left CR shows 2.0

of. is leading first PR i 7.4079.073664

WSt rounded to four SMA ¢ .0737.006088
w\: “\’ ﬁgures.

\2)} Multiply by .1 and then change SMA to next first a,m.i second differ-
ences, reading the former from right of PR, after which

CR shows 21
PR ¥ 7.4816.079752
. SMA ¢ .0798.006211

and so forth.

Obviously, the second differences should be exact if poss}ble, and _t.he
rounding to fewer figures taken in first differences and the desired funetion.
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28. As automatic caleulators have means of adding or subtracting in
hoth PR and CR, in the latter by multiplying with empty SMA, and are
especially suitable for dividing subsequent to a multiplication, computing
work may often be simplified to a continuous series of calculator eperations
by making such alterations in the procedure to adapt it best to caleulator

techniques.
The general expression of the best form for such computations is

(13) g +ha= 1 ’\’ O\
in which the order of the entries is alphabetical and %, 4, - - 487 added or
subtracted in CR with 1 set in SMA to show proof in PR of CR entry.

By means deseribed in See. 5, even this expression may be retained in the
caleulator for further operations by transferring it t6(PR by multiplying a
setup of 1 in SMA by the amount in CR (reversedde'reduce it to ZET0S).

If there is much computing of one type, the .n\}thod that it is proposed
16 use should be explored to see if modifications may reduce it to the above
standard form, with resulting elimination of eopying intermediate amounts,
resetting, ete. « W

Because the modern calculating ma,ﬁﬁine will multiply substantially as
rapidly as the factors may be enteted mto keyboards, many long estab-
lished computing techniques, sugh\as the logarithmie, are giving way to
direet computations, N

A typical example is t.hqxévival of the Vieta method of approximating
the roots of integral functiops {polynomials). It gave way to the complete
Ruffini-Horner modificagion principally because of the latter’s use of
small multipliers fof btaining the successive “reduced” equations. Be-
eause the caleulating machine imposes substentially no limit to length of
multiplier, t.h‘eQrifginal Vieta method as modified by Birge* (or the New-
ton-Raphsgn} G now to be preferred for many reasons, among which Is
that the.rdturn to the original coefficients at each step eliminates the
possihility ‘of cumulative errors should any of the coefficients of the R-H
“redtreed” equations be incorrectly computed. '

N
Q



reciprucals of t-he amounts shown in Cols, 1 and 2, respectively for use when the multi-
plication process is more suitable than that of division.
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TABLE 1

Drvsors ror Use Iv Extracrivg Frve-Ficuse Squars Roots
For deseription, see page 60.
This table, eopyrighted 1940 by Marchant Caleulating Machine Company, Oakla.nd

Calif,, U.8.A., ia reproduced by its express permission. The fable iz slso available with
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N

100-187 190-334
A Col. 1 Col. 2 A Col. 1 Col. 2
100 2000 000 | 6 324 555 180 2 756 810 | 8 717,708
102 2019 901 | 6 387 488 193 2778 489 | 8 7863
104 2039 608 | 6 440 806 196 2800 000 | 8 854.377
106 2059 126 | 6 511 528 160 2 821 347 | &'021 883
108 20758 461 | 6 572 671 202 2 842 534 ) 8088 882
110 2 097 618 | 6 633 250 205 2 863 SELN\| 9 055 385
112 2116 601 | 6 693 280 208 7 8R4/ 9 121 408
114 2135 416 | & 752 177 211 2 905\168 | 9 186 947
116 2 154 066 6 811 755 214 2 48 9 252 027
118 2 172-556 | 6 870 226 217 2¢461s4 | 9318 652

VS
120 2 100 890 | 6 928 203 220 <Y 2066 479 | 9 380 832
122 2200 072 | 6 985 700 223 2 086 637 | O 444 575
124 2927 104 | 7 042 727 - 228, 3 006 659 | © 507 891
126 2 244 994 | 7 009 208 279 3028 546 | O 570 780
128 2262 742 | 7 155 418 232 3046 300 | 9 632 27
130 2980 351 | 7 211 103 N 235 3065 942 | 9 095 360
132 2207 825 | 7 266 361 239 3001 825 | 9 777 525
134 3315 167 | 7 321 209 243 3177 631 | 9 859 006
136 2 332 381 | 7 375636 247 3 143 247 | 0 039 Si9
138 2349 468 | 7 438670 951 3168 59 | 1 001 098
£ 2

140 2 366 432 |\ 7483 315 255 3192 744 1 1 009 951
142 2 383 277 {7 538 577 259 3 218 605 | 1 017 841
144 2 200 0007 529 166 263 3243 455 | 1 025 671
146 2 416 gogC) 7 841 089 267 3268 €27 | 1033 441
148 2 433,105 | 7 694 154 271 3092 416 | 1 041 153
150 429%400 | 7 745 060 275 3 316 625 | 1 048 809
152 ) 86 700 | 7 700 498 279 3 340 850 | 1 056 409
154 |{B381 935 | 7 848 567 283 3 364 521 | 1 063 955
156 «h'2 497 998 | 7 899 387 987 3388 215 | 1 071 448
158" 2 513 961 | 7 940 843 201 3 411 744 | 1 G78 388
7N

(1™ | 2520 822 | % 000 000 295 3 435 112 | 1 086 278
162 "2 553 429 | 8 074 652 209 3438328 | 1003 618
166 2 576 820 | 8 148 620 208 348157 | 1100
169 5600 ODD | € 221 9922 307 3504 288 | 1108 162
172 2 622 975 | 8 204 577 311 3527 038 | 1115
175 2 045 751 | & 366 600 a15 3 540 648 | 1 122 497
178 2 668 533 | B 438 009 310 3572 15 | 1120 602
181 3600 725 | 8 508 818 324 2600 000 | 1 138
184 5712 032 | 8 570 044 329 3627 671 | 1 147 170
I8T 2 734 959 2 648 699 324 3 6565 133 11

1

\
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339.611 £15-999
A Col. 1 Col. 2 A Col. 1 Col. 2
339 3 652 301 1 164 474 619 4 975 942 I 573 531
344 3 709 447 1 173 030 627 5 007 994 1 583 867
340 3 736 308 1 181 524 635 5 039 841 1 593 738
54 3 762 978 1 189 958 643 5 071 489 1 603 746
359 3 789 459 1 195 332 651 5 102 040 1 613 891
364 3 815 757 1 206 648 659 5 134 199 1 623 5
369 3 841 875 1 214 907 667 5 165 269 1 633,401
374 3 847 816 1 223 111 675 5 196 152 1,643,168
379 4 893 584 1 231 2680 683 5 226 854 axgase 876
384 3919 184 1 239 355 692 5 261 179 L 663 731
389 3 944 617 1 247 397 701 & 205 281\ | 1 674 515
394 3 B89 88T 1 255 388 710 5 329 165™\[ 1 685 230
309 3 994 997 1 263 329 719 5 362 835 1 695 877
405 4 024 922 1 272 792 728 5 3961205 1 708 458
411 4 054 627 1 282 156 FET 5429 549 1 716 974
117 4 084 116 1 201 511 746 \B 462 600 1 727 428
423 4 113 393 1 300 769 755 N5 495 453 1 737 815
429 4 142 463 1 309 962 Teds* 5 528 110 1 748 142
435 4 171 331 1 319 091 774 5 560 576 1 758 408
441 4 200 000 1 328 157 82 5 592 853 1 768 615
447 4 228 475 1 337 181 791 5 524 944 1 778 784
453 4 236 759 1 346 106 801 5 660 359 1 780 972
450 4 284 857 1 354 90 811 5 695 612 I 801 111
485 4 312 772 1 363 818 821 5 730 620 1 812 181
471 4 340 507 1 372%89 831 5 765 414 1 823 184
477" 4 368 066 1881 304 841 5 800 QU0 1 834 121
483 4 395 452 | 4, 369 964 851 5 8§34 381 1 844 993
489 4 422 668 | 17398 571 861 5 868 560 1 855 302
495 4 449 7164 ™1 207 125 871 5 902 542 1 866 548
502 4 481 071 1 417 039 §81 5 D36 320 1 877 232
509 4 312206 1 426 885 891 5 069 925 1 887 356
516 49538 127 1 436 663 901 6 003 332 1 898 420
523 £a73 B3N L 446 378 412 6 039 868 1 900 974
530 {804 346 1 458 022 923 6 078 183 1 421 458
537\ 7N 634 652 1 465 606 934 & 112 283 1 932 874
544\\ 4 BG4 782 1 475 127 045 G 148 170 1 944 222
551 4 894 678 1 484 588 956 6§ 183 850 1 955 505
,\~553 4 724 405 1 493 088 0967 6 219 325 1 966 723
L \a6s 4 753 946 1 503 330 978 6 254 508 1 977 878
V672 1 783 304 1 512 614 959 G 280 674 1 988 970
574 4 812 484 1 52% 841 1)
587 4 845 617 1 532 319 6 321 362 1999 000
565 4 878 524 1 542 725
603 4 911 2312 1 553 062
611 4 943 683 1 563 330
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TABLE 2

71

Divisors For Usk IN ExTracTing FIvE-Frauxe Cuee Roorr

For deseription, see page 63.
Thiz teble, copynghted 1940 and 1944 by Marchant Calcula.tmg Machine Company,

Oskland, Calif., U.B.A., is reproduced by its express permission.

100-182 185-325
A | Col.l | Col.2 Col. 8 A Col.1 | Col.2 Col. 3
100 | 300 000 | i39 248 | 646 330 | 185 | 452 101 | 200 847 |  974/023
102 | 203 687 | 145 008 | 654 920 || 188 | 456 978 | 212 109 | 984\524
104 | 507 048 [ 142 037 | 663 453 || 191 | 461 824 | 2i4 360 | ¢992 970
106 | B11 883 | 144 763 | 671 932 || 194 [ 466 648 | 216 599 {1 005 362
108 | 515 794 | 146 570 1 680 357 || 197 | 471 446 | 218 s26+1 015 700
110 | 319 681 | 148 583 [ 688 731 (| 200 | 476 220 | 2210421 1 025 986
U2 | 323 54a | 150 176 | ©o7 054 | 203 | 480 971 | 223\247 | 1 036 220
14 | 337 284 | 151 958 | 705 328 || 208 | 483 6981 925 441 ; 1 046 404
116 | 331 202 | 153 730 | 713 554 || 200 | 490 402N 227 624 1 1 056 539
18 {2334 908 { 155 4oz | 721 732 || 212 | 495 084)'229 797 | 1 0G6 625

— "\\ 4

190 | 238 773 | 157 244 | 729 864 | 215 | 490 943 | 231 960 | 1 076 664
152 | 342 527 | 158 087 | 737 051 || 218 _\SD438I | 234 113 | 1 036 656
125 | 346 260 | 160 720 | 745995 || 221 M\5OR 998 | 236 256 | 1 096 603
126 | 340 073 | 162 423 ;753 905 || 224 \})513 504 | 238 380 | 1 106 505
128 | 353 667 | 164 158 | 761 953 | 227 +| 518 169 | 240 513 | 1 116 362
30 | 357 342 | 165 863 | 760 seolftN230 | 522 725 | 242 627 | 1 126 177
132 | 380 007 | 167 560 | 777 7as\||® 233 | 527 260 | 244 733 | 1 135 048
130 {364 635 | 160 248 | 785 581 236 | 531 777 | 246 820 ) 1 145 678
136 | 368 254 | 170 028 | 79H370 || 240 | 537 760 | 240 BLO | 1 158 587
138 | 371 855 | 172 600 | 801138 | 244 | 543 727 252 376 | 1 171 425
140 | 375 430 | 174 2644 \-808 860 | 248 | 540 654 | 265 127 | 1 184 193
142 1378 007 | 175 91O\ R16 545 || 252 | 555 548 | 257 863 | 1 196 892
14 | 383 557 | 177567 | w24 to4 h 256 | 561 411 | 200 584 | 1 209 524
146 | 388 0ot | T70%008 | 831 808 || 260 | 567 244 | 263 201 } 1 222 091
142 | 350 609 [\&0/S41 | 530 387 || 264 | 573 047 | 265 985 | 1 234 593
150 | 303 1301 ¥82 466 | 846 932 || 268 | 578 821 | 268 665 | 1 247 033
152 | 506 Aodol 154 OR4 | 54 444 || 272 | 534 566 | 271 832 | 1 259 410
154 | 250560 | 185 696 | 861923 || 276 | 590 284 | 278 085 | 1 271 727
136 | 403526 | 187 300 | 869 360 | 280 | 505 973 | 276 626 | 7 283 085
158 o|\406 967 | 188 997 | 876 784 || 284 | 601 836 | 279 a54 | 1 296 184

L E60% | 410 304 | 100 48 et 168 || 288 | 607 272 | 281 870 | 1 308 327
Mgy’ | 413 807 | 192 S5% 0 o1 Eso || 202 | 612 881 | 284 474 | 1 520 413
Tos | 415 206 | 103 650 | SOB 843 || 206 | 618 466 | 287 066 | 1 332 444
e | G50 2o1 | 105 221 | 06 136 || 300 | 624 025 | 289 647 | 1 344 421
108 | 355 02 | 106 786 | 013 400 || 304 | 620 560 | 202 216 | 1 356 345
170 | 497 321 | 108 345 | 920 634 || 308 | 635 070 | 204 77 | 1 368 217
179 | 3% 933 | 200 671 | 031 434 || 312 | 640 557 | 207 320 | 1 38 038
R a2 | 502 985 | 042 171 || 316 | 646 020 | 209 856 3 1 391 508
7o | 335 525 | 505 2ss | 952 847 || 320 | G5 460 [ 302 381 | 1 403 529
o 1432 200 1507 5721 063 464 {| 325 | 658 229 | 305 523 | 1 418 111

N\
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330-614 622-1000
A | Col.1 [ Colz Col. 3 A | Gkl | Cal.2 | Col3
30 983 | 308 648 | 1 432 618 | 622 | 101 465 [ 470 957 | 2 185 900
335 g{% B63 | 211 758 | 1 447 053 | 631 | 102 441 | 475 489 | 2 207 028
340 | 678 320 | 314 853 | 1 461 416 || 640 | 103 413 | 480 000 % ; 4; 95?
345 | 084 963 ] 317 932 | 1 475 708 || 649 | 104 350 | 484 490 Son 50 A
350 | 691 565 | 320 996 | 1 480 033 || 658 | 105 343 { 488 058 | 2 289 54
355 {698 136 | 324 046 | 1 502 0S8 || 667 | 106 301 | 493 407 | 2 200 162\
?9’550 704 676 327 082 | 1 glg 179 676 107 255 | 497 835 | 2 310 747
365 | 711 186 1 330 103 | 1 532 204 { 685 | 108 205 | 502 244 | 2 381 3(1
370 1717 666 [ 333 111 [ 1 546 165 || 694 | 109 151 | 506 634 | 20351586
3753 | 724 117 | 336 105 | 1 560 063 || 703 | 110 093 | 511 005 -3 8717873
380 | 730 539 | 230 086 | 1 573 809 || 712 | 111 030 | 515 3a7 {2 392 074
3%6 | 758 200 342 846 | 1 590 424 || 721 | 111964 | 519690 2 412 100
392 | 745 830 1 346 188 | 1 606 862 {| 730 | 112 894 | 5227906} 2 432 220
498 | 753 431 | 349 712 | 1 623 217 ||. 740 | 113 922 [ 528781 | 2 454 383
404 [ 760 084 | 353 217 | § 630 490 || 750 | 114 946N\'B33 534 | 2 476 445
410 | 768 500 | 356 706 | 1 665 688 || 760 [ 115 966N 538 266 [ 2 498 410
416 1 775 079 1 360 178 | 1 671 797 || T70 | 118,081 | 542 977 | 2 520 273
422 | 798 423 | 363 633 | 1 687 833 || 780 | IITB92 | 547 668 | 2 542 051
428 | 790 831 | 367 071 | 1 708 794 {| 790138 098 | 552 339 | 2 563 732
434 1 798 205 | 370 484 | 1 710 686 || s0\|\I120 000 | 556 991 | 2 585 322
440 1 805 545 [ 373 901 | 1 735 494 || 811™| 121 097 | 562 085 | 2 608 966
440 1 812 85 | 377 292.| 1 751 235 (L1892 | 122 190 | 567 156 | 2 632 505
452 | B20 125 | 280 665 | 1 766 906 L 833 | 123 278 | 572 204 | 2 655 938
458 | 827 367 | 382 030 | 1 782 508" 844 | 124 361 | 577 231 | 2 679 268
485 | 835 776 | 387 033 | 1 800.825 || 855 | 125 439 | 532 235 | 2 702 498
472 1 844 143 fao1 816 | 1 &I%651 || 868 | 126 512 | 587 219 | 2 725 628
479 | 852 468 | 395 681 | 14836 557 || &77 | 127 581 | 592 181 | 2 748 660
436 1 860 753 ; 300 526 [{1)854 437 || 888 | 198 646 | 597 122 | 2 771 596
403 | 868 999 § 403 3844 Y872 201 || o00 | 129 802 | 602 490 | 2 796 509
500 | 877 205 | 4071801 &89 882 | 012 | 130 954 | 607 833 | 2 821 312
507 | 585 374 | 410054 | 1 907 480 || 024 | 132 100 | 613 154 | 2 846 007
514 | 893 504 hAYL 728 1 1 024 097 || 636 | 133 241 | 613 451 | 2 870 594
521 | 901 593 I8 485 | 1 042 435 || 948 | 134 378 | 623 725 | 2 865 077
528 | 905 0B0N™22 235 | 1 059 705 | 9BL | 135 603 | 620 415 | 2 921 a%d
335 | 917/6(8/) 425 949 | 1 977 078 || o972 | 136 523 | 635 o078 | 2 647 772
542 | 895666 | 420 656 | 1 992 296 987 | 138 088 | 640 717 | 2 973 943
550 (Ah84 752 | 433 873 | 2 013 862 || 1000 | 139 248 | 648 530 | 3 000 00D
85834043 784 | 438 071 | 2 033 343
560y | 052 704 | 442 248 | 2 052 732
£8M | 981 751 | 446 405 | 2 072 029
582 1 970 666 | 450 543 | 2 o1 o7
590 | 970 541 | 454 883 | 2 110 357
598 1 088 376 | 458 763 | 2 129 391
606 | 997 171 | 462 846 | 2 148 340
614 | 100 593 | 468 010 | 2 167 206
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NOTES

1. Writien by Tracy W, Simpscn, Sc. B., EE., Mem. Amer. Math. Soc. To reflect
curtent methods with American-made caleulators, this section has been completely
rewritten, including an extensive outline of caleulator applications. These have no
vounterpart in the Ge.man edition. '

2, For & discussion of cquations of this type, see. Art. 10.

3. Cf. Direct Inferpalation and Subtabulafion, published as MM-189 by Marchant
Caleulating Machine Company, also loc. cit, Note 7 (below).

4. Cf, The Birge-Vieta Methad for Real Roots of Retional Integral Functions, published { N
as MM-225 by Marchant Caleulating Machine Company. N

5. See Batlow's Tables, Introduction by L. J. Corarie. ne .Y

6. Pamphlet MM-222, Marchant Calculating Machine Compary. ':\ ’

7. Interpolation and Allied Tables, by L. J. Comrie, H. M. Stationery Office, Tondon
W. C. 2; and MM-220 and MM-221, pamphlets published by Marcha.nt\ ‘Galculating

Machine Company. N
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CHAPTER TWO

INTERPOLATION
7. The Rational Integral Function. . \

1. In this chapter we shall treat with the following problem{ A-number
of related values of two or more variables are given; s furgcf.ig)\n is sought
which reproduces this relation with sufficient accuracy. If we know nothing
more than this about the theoretical relation of the W}ria:bles, it is natural
for us to choose as a represenistion of this dependeriee”a function which,
mathemafically speaking, is as easy to handle as possible. Such a function
is the rational integral function. If, for a fun(tion of one variable, we
consider the given values as abseissas and ordinates in a rectangular co-
ordinate system, then our task iz to draw:\t polynomial eurve of some
order through these points. In this ease $he given valies are assumed to
be exaet. If only two points are knownpthe interpolation eurve isa straight
line. This case has already been tieated in Art. 4. To become familiar
with the rational integral func’giﬁn; “we will first assume that the desired
rational function has been found ‘and that several values of this function
are to be caleulated or conséructed.

¢ \J

2. For ca]cu]atioq ﬁxhooses, it is customary to write the function

MNGE) = a2 + a2 - 4 oaz g,
in a way ghip']m to decimala:
N
N Oag Quoa ; Gny ~ > My 04, @y,

AN
j‘e; by omission of the powers of z, The index of the coefficient denotes

he exponent of the particular power of x. If the coefficients are given
numerical values, we must not. forget to insert zeros in the appropriate
places of this scheme. For example, instead of ¥ = 2% — 32® -+ 5 we write

1,0,0, -3, 0 45

In caleulating the value of such a function for x = z,, we do not ealcu-
late the individual bowers, multiply by the respective coeffcients and
add. Instead, we calculate the following expressions successively:

74
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o = 0.2y 3 G

&
Gpy = a1 Fe + ez = 028 + GuoiZo + Qo ,

n=1

.15 + G Tp

= 0z, + o

g8
[

1% 1 Ga N

= g{zo). . f‘\“‘,\
O
These caleulations are best carried out in the form of a scheme’givséﬁ by
Horper': <N

\v
Gy Gpoy Bz Geg 0 G G @GN0
2 Tl To@ly Folhoa v Tedh  Todi e
<\
% 3
aley al_. @i, v ab (ef lad = g,

The advantage of this type of caleulatiohtis that in the same sequence
we always carry out multiplication by ~w, and addition. If the accuracy
of the slide rule suffices, only a“siﬁgié setting of the slide is necessary.
I a caleuiating machine is avaikah}e, only the single multiplication factor
z, need be set on the maching™

Exactly the same ca]cu.h\tic;ﬁs occur if g(z) is divided by (z — %), a8
is seen in the boxed expressions.

, VY,
(El S oY + avn +aex"+a1x+ao) {x—zo) =, 2"
"\.Qt

+
N n2 ; .n-B ' r
&, xn<\~ oty zn_l +ai i x +Gp_a +--- +-azrt-a;
RN - -2
S T Rt o [P o
;n\’ W _ _
} @by | ahamo § 2
-z
{2q) ) z"

altz+ | a

r

__ﬂ_{ Z— | ot

&,
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From this it follows that we can write
@) @ =a]+ (x — z)fal + adz + alx> + -+ +al 2" F a7

Therefore, aj = glz,). It is customary to write the symbol [zz,] for the
bracketed equation [r. 8{11)]. We can now divide [zz,] by another vaiue

This becomes

{(z — ). A\
Gy Opy Ghoz+++  af af )
oA
) Tio, Tty - iy ziad O
@l alls az’ a = El(ﬂ:xz- N b
m'\'\.'

g(*) = o + of’(z — z,)
1) 1 o :.\\‘:

T &=z — zllel’ ez &Y+ all st 4 axTY,

in which e’ = [£,3,) and the function;iﬁ’\‘:he brackets is denoted by

{zzlxﬂ]' N

While [zz,] was of the (n — l)s:tideg";ree, [xz,20]) 18 of the (n ~ 2)nd
degree. If we continue in this wag,we obtain a product expansion of the
rational integral function e

9(z) = ab + al'(z *\«aéo) + "z — 2oz — =z}

)

(8) + a3 (x ’\%&)’Ex — Mz — 2) + -

il +oE = 2z — 2) - (2~ n,
where [22,_, ;& B7,] = a4, Is a constant,

If one qhQ’u'h calculate the value of such a product development for
any a tent %, it is advisabie to use a scheme corresponding to Horer's
scheme}?h which only the factor changes from column to column:

0;.:\ 'é::)!. a::;” L az’ ay’ a;
. \™

@ FAE = 5n) + bsE — 2 4 by 22) By(E — 2,) bE — 22)

bn—l bn—'.’ bg bl b. - ’(3—)
This arrangement needs no furcher explanation.
3. Egampte: The function y = z* — 34 + 1 is 1o be developed in

an expression in which the factors (x — 0.5), z + 0.5) and (z — 3)
appear successively, First we form Horner's scheme:
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1 -3 0 1
+40.5: +0.5 —1.25 —0.625

1 —235 —1.25 +0.375 = af
—{0.5: —0.5 +1.5

O\
| —3 J0.25 = a{’ A
A\

+3 +3 O

—ay :_’st’s

1 0 = af’ P2\

Then we obtain
y = 0375 + 0.25(x — 0.5) + (z — 0.5)(z A 0.5)(z — 3).

It the value of this expression is caleulated fgr'E}\= 2, then the scheme

x—3 x4+ 0.5 = 0.5
[~ .:: S
0 0.250" 0.375
-1 2.5 - 3.375
Y
— XN 2325 l — 3.
is obtained.
\/
4, If we set x, =.:‘§:i':= .. = x,_;, then we have a power series instead
of a product e&gg@éiqu:

® ) St al'e — 20 + @} — 2+ o el — 2"

This,%ﬁf;iéss importance for interpolation than for the ealeulation of the
o

t the rational integral function (¢f. Art. 19).

Example: The general equation of the third degree
P4 e Farta=10

is to be transformed o the reduced form, in which the coefficient of
the second power of the unkrown is gero. We introduce the new
variable z = z + @/3; ie., the funetion is developed in powers of
z + a,/3. For example, in the equation



78 PRACTICAL ANALYSIS

2 — 572" + 1.322 + 6.21 = (,

a;/8 = —1.9, and the following development results:
1 —5.7 +1.32 + 6.21
+1.9 -7.22 —11.21
N\
1 —3.8 —5.90 — 500 =q, .
e A\
+1.9  —3.61 O
" :’s."
t —19 | —051 =ay 2
+1.9 v
I ‘xt‘\\"
1 0 = al” &
Then the equation will be o\

(@ — 1.9 =85i(z - 1.9) — 5 = 0,

5. The Horner scheme can, he put inio graphical form, and ean be. used
both for the construction tii\t.he curve representing the function y = g(z),
and for the construrg;oh,bf the corresponding seale. The point-by-paint
construction of the cicve is carried out by Segner” in the following way.

S

o oo/ e ,

2N/ A e I
2 N oL
" 5
..\\: ’ )
P\ A N
S | e &
* 9 x ¥:j 7

Fre, 20 Frg. 21
Fx:om Flg 20,’ it follows, by similar triangles, that ¥ = gz, Segner used
this fact in his construction. For example, if a function of third degree
£)] ¥ = oz’ + ar’ + az 4+ .
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is to be constructed, we lay off the lengths
04¢ = 1A} = @y , A4, = AlA] = o,

?

{9a) _ :
. AlAz = A;_A' = gy, A2A3 = A;A; = (f ,

on the ¥ axis. These are marked off in the positive or negative direction
according to the sign. (In Fig. 21, which corresponds to the example in
Section 4, A,A, = o, is negative.} In the drawing,

CoB: = e-2; CiBy = @ox + 0; = a3 = A{B; O
A\

(10) C.B, = (@t + ag)z; CoBy = 6o + Ga% + &n = af = AB{

CuBo = (@2" + G + a)e; BB, = 02’ + a2 + ot ¥ ay = af .

The value B, is then the point of the curve belonging to the abscissa

0B = 2/3. This construction has been further ngeloped by Massau
{¥. 9.3). _ ’\ $

6. The Horner scheme has been put into’ gria.phical form in another way

by Lill® for the construction of the functien'in scale form. He makes use

of the fact that in the arrangement of-fHe various lengths shown in Fig.

N\ N

T1a. 23 Fig. 24

22 y = gz. Lill then plots successively the lengths representing the co-
efficients, beginning with the coefficient of the highest power. These are
plotted so that each is perpendicular to the previous one, those 'w1th
positive coefficients turning clockwise, and those with negative cf}eﬂiclents
counter-clockwise. (The scheme is shown in Fig. 238 for posi‘mvg terms
only. In Fig. 25, which corresponds to the preceding examplfa, Qg 15 Nega~
tive.) If the coefficient of a power is zero, we must note that, in the transi-
tion to the next coefficient, a rotation of 180° must be performed. In
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Tig. 24, 04,4,4,4, is the polygon representing the function
Yy = at" + a2+ az + a5 -

In this framework, another polygon is now drawn, the segments of which
are successively perpendicular, and which have the slope tan ¢ = z,
with respect to the corresponding side of the original polygon. The value
#p is the value for which the function is to be calculated. The broken
line OB,B. 8, is such a polygon for z, = 1/4. In this case, .
2 N
AB; = gy ; A8y = 3% + a4 = o}, 2N N
AyB, = (age + Go)¥o ; ABs = ﬂaxg + axzy + %"—_* aj ,
1 ?

AiBy = (2325 + aoto + a0 ; N

A8y = @y + asmy + GoT0 + o = ‘1"\\

Therefore 4,8, is the desired value of the fufiction. The sign of the length
A..B, is to be taken as positive if A,,B,. Jias the direction A,_,4, for
positive coefficients.

»,’
&N

7. The advantage of this reprﬂsehtatmn is that it permits a graphical
determination of the coeﬂﬁments ‘of the expansion of a rational integral
function in products (z —m), (@ — #)(@ — &) --- or in powers of
{z — x;). We consider ﬁ.rsh ‘lshe power series expansion. By similar triangles,

A%B ~ AByA,B, ~ AB,A,B,
I welet A = (1 a3,
\OB: = A3 ; B,B; = Xai; H BB, = Aa}: H

i.e., if & u:mt length is takon A times as Iarge, then OB, B, B, is the polygon
of the f tion in brackets in the expression

(12l = af + (& — zo)la! + afzx + Gaﬂ'-'z]

NI weo draw the rectangular polygon in this framework for z = 1z, ,
\startmg out again from the length OB, , we obtain the points 00C,C, , and

Bzcs = A%y ; ) BEC'S = }t(aaxu + a;) = Aa;';
(18)
B,Cy, = Mo + ai)x, ; B.C, = Mazzs + adx, -+ al) = Aal’.

By similar triangles,
AQA B, ~ AOB Y ~ AC,B.C, ,
and further,
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o, = )\”as N CyC, = kzagfr
that is, if

(14} y=ab+ al'lz — =) + (& — z)[af’ + a2],

then the polygon 0C;C; is the sequence of lines of the pelygon represented
in the brackets, except that the unit length here is A’, ete.
The polygon OD;C,B14, gives the coefficients of the expansion of y in

powersof  — o . Of course, each length must be measured with a different £\

scale: A

nS.Y
0D, = Nay; Dyl = N'a4'"; C:B, = Aal’; Bido = af . \%
/ Bg_ “’(“”&
/ &N
/ 1@ i
o N
/ o\

/,\aﬁw’:'a i
S
"ay/ ‘
7 &
8 /{‘{’: al
2~
g
o PESN
:\"’/ o 2
NN 8.
y s.\/'CzZ'-—-—""M V-l O
) Da Nz =

Fig, 28

In Fig. 25, which represents the example of Section 4, D0, = 0, corre-
sponding to the expansion

g = —5— 951z —~ 1.9) + & — 1.9)%

8 To determine the coefficients of the product expansion, we would
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draw the polygon for & = x, about the first polygon, the polygon for
z = z, in the framework thus obtained, ete.

If it is desired to construet the seale for such a product expansion, the
coefficients must be joined to a framework exactly as in the power series.
In this case, however, we do not construct a rectangular polygon. Instead
we construet a polygon the sides of which must have the dirertion, with
respect to the corresponding side of the framework, given by ~

tg @ = {z — ), 1€ @uor = & — Tasy , et
oA\

NS ©

9. The coefficients of the product expansion can also,be/found from
those of the power series by means of Segner’s canstructem, 7 (8}. However,
this will not be considered here. The construction of the eurve representing
the function, as given by Massau in & gencr'a.lizat\i‘on of Begner’s con-
struction, is more convenient than that of theNéale according to the
generalized method of Lill. \ )

As in the Segner method, the coefficien of the product expansion are
plotted successively on the y axis, the }gsgﬂ:we coeflicients in the positive
direction of the axis and viee versa. Thisis
shown schematieally in Fig. 26 for aMfure-
tion of third degree. We draw lines-parallel
to the y axis through the a,chlss'as Fo,T1,
zeand x + 1, 2, + 1, x,-}—laswellas
through the abscissa x forwhich the value ¢
of the function is to bé constructed The
endpoints 4,4, of a\@ e projected on the

y-parallels throughye, and =, + 1 t0 42 A
and A{, respechively. The line connecting
these point& lutersects the parallel through
zin B, . »'{‘hen

¥
Ay
A

QL

s\ CiBy = ag(z — z.);

e N B, = AVBY = axfz — T2) + az .

\..

If we connect By on the parallel through 2, + 1, with the projection
A{ of A, on the parallel through z, , we have

C.B, = lay(z — T2} + a](z — )
and '

CoBy = AGBl' = aulx — 2,z — ) + axlz — ) 4+ a

"The procedure is continued in this way until we have, finally,
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(B, = Gz — Mz — o) 2 — T} + ay(z — x)(z — x)

+ ale — x) + an.

’\:\.} Fra. 27

Figure 27 shows the cofisgruction of the ordinate for the abseissa value
& = 1in the preceding’gxample:

y = 03774 0.25(z — 0.5) + (z — 0.5)( + 0.9(= — 3.
“\Q.
The result s e CB, = —1 (cf. Art. 19).
.*Ez\ NOTES
ﬁé),\l;ll;r, Phil. Transactions {1819) T, p. 308

. Brgner, Petrop. Nowvi Comment. V11 (1761). . ]
\i‘.'Lill, Newwy. Aun. de math, Znd series, V1 snd VIT (1867-68}.

8. The General Interpolation Formula.

1. To obtain the product expansion of an arbitrary ﬁr‘mti(;nfniorrr;
sponding to the development given _in Art 7 fO_l‘ thef ;z;o{?ﬁrv; Welfich
function, and simultaneously to obtain the equation ith the so-called
passes through & numbex of given points, we start out Wi

divided differences.

Ay
N\
&\
A\
X \
g N
4 ¢ '.
R W
A\
N’
NY
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If the values of a funetion f{z} are given for a number of arguments

To, Ti, ", T, then the expression
J(xM) i f(xr) _
® . w f2n2.]

is called the divided difference, or difference coefficient, of first order.
Geometrically, this is the slope of the secant through the points wifhthe
abscissa x,, and z, , if x,. and z, are real values and f(z) i3 a real function,

From the equation A\
7N\S ©

S, _f) >
+ &

Ly — Xy e ™ L B [x!'x:ﬂl N:"

(2) [Znr] =

it may be seen that the divided difference of ﬁrst,féu‘ﬂer is 8 symmetrie
function of its argument, so that the order of the afgliments is immaterial.

From the divided difference of the first ordery the divided difference of
the second order can be formed by a corresgbg;\;ling process of caleulation.

The expression is ¢
_ [~ lzan] _ @) —fe) _flow) 1)
] = Tr—, 7’ {t—z )t —x)  (Ta—z)(e—z,)
@) Ny
EBNS F@n) flz,)

=y —2.) * @a—z)(En—2,) + (x, —2) (&t~ 2w)
Henece the difference oiftko divided differences of first order, which have .
one argument value\@s common, is divided by the difference of the other
argument values{ T can also he secn from the above equation that the
order of the.afghments is arbitrary in the divided difference of second
order, so th{%."'

@ JE2z] = o] = Rwar] = [e@2.] = (1,02, = [zen)

Diyi@e'}l‘ differences of any higher order can be caleulated in the same
wag, For example, the divided difference of third order is
s [z = (&:zitn] — I:caxmxrl_
T; — &,
Therefore, to form the divided difference of nth order, we first form the
difference of two divided differences of the (n — 1)st order:

[y < @y awimyey - Za—s] a0d [y, - -+ i aTaLiay * v Tacils

Tken only twe argument values differ from each other. The expression
above is then divided by the difference of the tweo argument, values z;
and =, . This is the divided difference of the nth order.
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2. Now it ean be shown by induction that the differences are always
symamelric funciions of their argument. It is assurned that this theorem is
proved for the nth difference. Let {zyx, -+ 2.} be a symmetrie function
of its argument, and let it be put in the form

[y = <~ 2]

® % fla,) _ "
= LT T wE T G e —me) G A
Then the (n + 1)st difference is AN
O
[xﬁxl Tt .’L‘n+1] - [xoxl — m“] : Ixxﬂlj}ﬂ — x“-ll “.( n:‘}: i
- f) o
. (e — x) -+ (@0 — )= — Zni1)

. f(as() ' _
2 + .Z-;L[(xa":cm)(:v,~xo) (z,', o, — T} e ()

e ]
T (B Tor 2 — 1) - ('a:,r—:c, D@ —2ee1) o (@ —Tast)

f(xn+l) .
{ﬂ'mﬂ - xu)(ﬁmt-\ g 31) e — 24)

The sum in (7) can be tra\hsformed In place of the general term, we ean
write

£ >

20~ 5
oy — x,ﬁ;&(’if - Il) e (x, - x,_l)(wr - xﬂ—l) T (:G‘. - xﬂ}
N\

RN <t )

xr, — @y _xr — Tasl

Phe\last, expression. in parentheses can be written

1 1 o = Easxi
©) -

T — Zo T — T @ — T} = Tan)

The mumerator of this fraction eancels the first factor in the denominator,
s that equation (7) takes the form

n+l (-"Jr)

R 2 (o, — o) - (= Zy ) (@) (@ == Tunr)”

Then the following has been proved: If the divided difference of nth order
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is written in the given form, which is independent of the order of the
argument, then this is also true of the divided difference of the (n 4 1)st
order. In the previous section we showed that the divided differences
of the first and second order ean be put in thizs form. Therefore, the
divided differcnee of any arbitrary order is & symmetric function of its
argumnent.

Tt can be seen, without further discussion, that the following theorems
hold for the divided differences:

The divided difference of the sum of several functions is equ%l‘(o the

sum of the divided differenees of the several functions. £\
If a function is multiplied by & constant factor, then the dﬁnded differ-
ences are also multiplied by this factor. R N

&
3. We now write the equations for the divided d'ﬂ%érences in & some-
what different form:

(@ — zolzz] = () f(xﬂa\:;\\'
(z — &)[wzem] = [xx] ‘[‘xuéﬂ

(11) (& — z)[zmazizs] = [a:;m;.sa;lj — [@o®132]
{z — x.)[xz0 ',i"')’n] = [zxp «+* Tay) — [Tz, +-* 2,)

If the value for {xx.,],\}alcuiated from the second equation, is substituted
in the first equatios, we obtain
a2 flo = f(%) + @ ~ alwexd + (£ — 2 — z)lwz0ms].
If the valu&ca culated from the third equation of (11) is substituted for
mox:],i\ T

3 @) = f@a) + (& — 2o)[zom] + (& — )@ — 2,)[terims]

N

QO + 62— wa — e
and so forth. Finally we obtain

F@) = flz) + (x — wo)[moz] + {x — 3—'0)(3_ — ) [To1a]

(14) + & — z)z — 2@ — 2 romiars]

T 3) o @~ w ey o Tl F Rasr s

where the remainder is
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(18} Roi = (2 — z)(m — 3) -+ {& — z)lzmez - 2.

This is the general Newton interpolation formula.’ At first, this is only
an identity. But with it we have obtained the expansion in produets of
an arbitrary function. The diffieulty lies in the correct estimation of the
remainder. The magnitude of this term determines the value of the ap-
proximation, when a finite number of terms are used for calculation. If
the expansion is broken off at any term, an approximation function isd
obtained which has a series of discrete values in common with the funetion
to0 be approximated. For example, if the series is broken off with the farm
(x — z){z — 2.){x — 22) [mex122m), then sll the subsequent terms Qo}ltam
thefactors® — 2o, & — 2, , T — z.and £ — 23, and for the vahgesw -~ Zo,
Z, %, % these terms vanish; ie., the approximating curve~ha,s the four
points with these abscissas in eommon with the curve Y= i(z)

For the rational integral function, the above expansfonjs identieal with
that obtained according to the Horner scheme. \

The divided difference of nth order of a ratiodal integral function of
nth order is a constant. Each divided d:ﬂ?erence\of higher order is then
Zer0,

In other cases, the divided differences of hlgher order become vanish-
ingly small, 50 that by neglecting the rema,mder a satlsfactory approxi-
mation to the path of the function i ECA obtained in an interval g - by in
which lie the values <5 --- z,.  ~§"°

4, Example: The fm,lctlha gy = sin z ig to be approximated by a
curve which passes ‘t@nough the peints with the abseissas 2 = 09,
30°, 45°, 60°, 90" The approximating function then has the equation

y = 0.016667% 0. 000063546z(x — 30)
O
A 4 0.0000007262(x — 30)(x — 45)

O + 0.0000000027z(z — 30)(z — 45)(x — 60),
K N\ ) ao|
Vo s BN
B e B A
- o900
~ T
TG, 28

where « is to be measured in degrees. The deviations from the sine



N
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curve calculated in this way, are shown by the eurve drawn in Fig,
28. The deviation between 0° and 90° is never larger than & in the
fourth decimal place. If sin z is expanded about 2, = 7/4 in a Taylor
series, we get, for £ = ¢ — n/4,
_1 E_E L E )
y“§2§(1+5P2 ~s T
if we go to terms of fourth ofder, as was done in the produet ex[}a.n-
sion. Here ¢ is measured in radians. The deviations fropd the true
value are given by the broken line in Fig. 28. Between-80° and 60°,
the fifth decimal place is accurate. But the deviation bécomes very
large at either end of the 0°-90° interval. Thus, Wwhile the product
development is aceurate to three places t.hroughijut the entire in-
terval, the Taylor series is very accurate in‘the vicinity of 45° but
at 5° and 85° it is incorrect in the third degimal place, and hecomes
even more incorrect beyond those valuege
5. Newton's general interpolation fermula, which has been derived
above, is only another way of writing the well-known Lagrange formuls.’
That is, if we et N\ :

(16) o) = ¢ 8 — ) - (& — ),

then the derivative of thig function consists of n 4 1 terms of a sum,
each of which is a produchof n factors. The rth term of the sum is

(17 @ — 2R @ = Too)(@ — Tewr) - @ — 2,).

Hence the factor\(# — =.) is lacking, a factor which appears in all the
other terms. Oonsequently, the derivative has the value

18  #d) = @ — %) o~ )@ — 2a) - (2 — 2
for z \%\.v:: . If we observe further that

ad

gy -+ 2] = f(z) o)
i"[m Gl s Ry B g e Sy oanyey S UL
f(z,)
a9 + (x,—z}e, —x0) « - - @ =T T Tpsy) + o (& —1,) L
+ f(zn)

(@—2) (2o} <~ + (@y—a_y)

as was shown in section 3, then, by application of the expressions for
@(x) and »'(z), we can write
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R SO . €) SV i ) S S L ¢
ot = e T e T T G = e
fz)

(@ — De’(z

If we solve this equation for f{x), we obtain Lagrange’s interpolation
forrula N

@ A
L o) — 7) + [zzo T k() ' \' A

which has a remnainder identical with- that of Newton’s formula,

@n f@ =

6. The observations made so far are also valid forme'Qﬁsﬁlex values of
the arguments z, , --- , x, , and also for complex fimtions. We now wish
to assume that f(z) <& a real function of the real pariable , ie., that z, ,

-+, , are real values of this variable. Also we# e thaf f(z) possesses
finite econtinuous derivatives up to the nth lh the interval {a, b) being
considered in the interpolation. The n + W valucs of the argument,
T4, -7+, %, lie in this interval. We call’ the approximating function,
derived in section 4, (without the_ réma]nder term) N {z), and formx a
new function D\

22 F (I») f (x) — N(=).
This function has a,t least, n\}- 1 roots in the interval (a, b), since f{x,) =
N@g), -y flea) = .&) Then, by Rolle’s theorem, F'(z) must have

roote in thls interval, F*(z} must have n — 1 roots, efe. F™(x} bas at
least one root. Theny
\¥

(23) N J7E =N,
Bui, aa Be. seen frem (14), only the product forming the last ferm of
N(z) isob: th degree, and the factor of 2" then is 1. Therefore, N (§) =
# ! [zps- 2] That is, .

N\

\”@y [xo"-xn]=$f“"(z}, @ g b

The divided difference of nth order, multiplied by n!, is consequently
equal to the nth derivative of the approximated funct—ion in an interval
which lies between the extreme values of =5, ++- , 2. . With the aid of
thig formula, the remainder term of Newton’s formula may be put in a
different form. If £ iz some value of the variable infermediate to the
extreme values of Zo, --- , %, then we may write, in place of equation

(18),
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(ﬁ - -Tr'g) o {x — 17,,) fl»—l}(é)'

@) By = (m + D)
a form of the remainder which was first given by Cauchy.’
) NOTES

1. Principic (1887), Book, 111, Lemma V. ease 2.
2. Legons élémentaires sur les mathématigues (1795) Ouevres VII, p. 284,
3. Cauchy, Comples rendus Pa i 11 (1840}, pp. 775-789. ~

9. Calculation and Construction of Curves through given Pn;m\s

1. Ininterpolation, the problem is either to czleulate, from the individual
values of the funetion, which are sometimes given as pmn.tq on a curve,
the equation of the curve through these points, or to canstluct this curve.
Various methods are used according to the type of datal’

Mathematically, this problem is solved by thé{general interpolation
formuld, 8 (14). '

If the function values are given for the drgu\tnents Ty, Ty " g Bay
then thc constant g, is known. We first for.n’t\the differences of first order,

glx) & g(n:a)

[zoaz] = = 3z,

and substitute successively the mlilé.% Ty, e+, X} [€ox,] is then the
coefficient of (z — ). Next we Jorm the second order divided difierences
from the above values. In tur’ we find the divided differences of third
order, etc. This ealeulationNof divided differences is best carricd out in
tabular form. In the execlftmn of this scheme, it should be observed that
in the formation of é\}lwlded difference of the next higher order, cnly
differences of the p.recedmg order are used. These have sll the same values
except one. The scheme s 111ustrated m the table below.

.t\"

\\\ EXERN:
RN ol = gy = [ata] = [ma]
O Iw — 41
*

4

Ty @

Ty L0 [T Tefth — Yo [xlxtl.l

To | 2 [To ~ Zoltte — ¥4 [22,] & — zflaza] — [za0] {210
Ta | Ys [T — Toltfa — Yo [xaxn] T — &y I:cm] - [1:139'] [3331%}
Zo | ¥ |20 = 2olya — w4 [240] . — LX) — l@20] frazs20]
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{#2zmime]
= [xrxlxﬂi - [2723130[
T — Ty
Xa !ﬁ
| N\
Ly | Yo '\:\‘-
Ty (Y| % — 3 [at10] — [Zaa) ' [xsxle'ﬂ:ﬂ]}
|| e — 2 [2s120) — [20z,20] [%astvo]
L T [, z\\ e

The underlined values are the values which oe\ur as goefficients in the
product development of g(x). \ {

2. Ezample: If we denote by +* thesnumber of moles of LiCl which
are dissolved in 1000 gms of mefhyl alecohel, and by f, the osmotie
coefficient, i.e., the ratio of ihevob‘served freezing point lowering to
the. dccz‘ease Whlch is pred.léted by classical theory, we have, by the
chservations of Frivold

AN

29’ | 0.07¢ ) i 0.148 l 0,232 | 0.354
: - :
1~fo | o2 | o026 | ezm | o

From these va{ues we obtain the following table of divided differences,
in which on{y'\he numbers above the horizontal line arc to be considered.

X \1§

™R

0072 0.152

\/
N0.248 | 0.216 | 0.074 | 0.064 0.865

0.232 | 0.227 | 0.158 | 0.075 | .475{ 0.084 | —0.300 | —4.65

0.354 | 0.235 | 0.280 | 0.083 | 0.206 | 0.206 | —0.569 | —2.76 | 0.122 | 1.8¢ | 15.5

0341 | 0.230 ] 0.267 | 0.078 | 0.203 [ 0,193 | —0.572 | —2.96 | 0.109 | L.69 | 15.5
1 — fo = 0.152 + 0.865 (2¢ — 0.074) — 4.65 (2y — 0.074) (2 — 0,148}
+ 15,5 {2y — 0.074) (2y' — 0.148) {2y’ — 0.232).
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The expanded Horner method, given in 7.2 is used in the caleulation
of & function value, For example, as the value of 1 — f, for 2, = 2y’ =

0.341, we get

wy_ 0.109 0.103 0,267
o1 15.5 —4.85 +0.865 +0.152
aa(za _ ) +1.69 —0.572 +0.0780
@1 -2.96 +0.203 +0.230,
RS,

This calculation can be carried out directly in the dlﬁerence‘scheme in
which we start from the constant divided difference of thxrd .order, Then
the numbers in the ahove table lying under the honzonta,l line ate then

obfained. . ’ "\ &

3. We consider once again the construction ¢f\the curve by the method
of Segner as generalized by Massaw. Here Wi-}:S all limit ourselves to &
function of third degree. Let the four poi.ntsr}'g , Pi, Py, and P, be given,

¥,

o
'S )
O %
NS/ !
o | .
& 7 A X Xk %

X \’\w: e, 20

(Eig.:29) and let us seek the coefficients a, , a,, a; , and a, . The value of
'“’t}he’ expression

¥ = ay + a{z — ) + aofz — )@ — 2))
+Fas(x — z){z — 20 (z — z)

will be equal to a, for z = 2, , i.e., the z-parallel through P, cuts off the
distance 04, = &, on the ¥ axis. First we determine the three points
with abseissas 2, , 2, , and x, , and ordinates [2oz.], [wex.], [wozs], exactly
ag in the caleulation scheme. Then P, is connected to P, , P., and Ps .
These connecting lines intercept the lengths



CALCULATEON AND CONSTRUCTION OF CURVES 93

78, = B8 = 0@ _ 0. g, o 00 — ()

J— p— = [xa24];

g = 2o = gled _ [
_ Tz — Za !
on the Y-parallel through x, + 1. If these points are projected on the Y-
parallels passing through the corresponding abscissas (of P, , Py, Pa)ys
we obtain the points @, , €., and @; . These points have the desired cdx
ordinates if we consider a new x axis through A,P, . The projection)ot
¢, on the ¥ axis gives the ]en.gth AqA, = @, . The same consérietion
(which is not shown in Fig. 29) is carried on from @, by usewi*he ¥-
parallel through x, + 1. We then obtain the points R, , R, , the prdinates
of which, measured from the g-parallel through 4,4, , ealeulated to
be [z2i2,) and {zyz:25]. Then 4,4, = 4, is determined. bng‘i and A,4,; =
&, is also determined by the line B, R, and the z-parallsl through 2z, -+ 1.
We proceed in the same fashion for equations ef\higher degree. From
the values of the coefficients thus caleulated, the'curve on which lie the
given pomts can be constructed point-by- met accordm.g to the methad
described in 7.9. ™

4, If{ we are concerned only \vit.]:g"hj}pointwise construction of the in-
terpolation curve, and noi withithe numerical determination of the
cocfficients, a simplification of/the drawing can be undertaken. A special
abscissa seale is intmducediio}\each reduction step, as is shown in Fig. 30,

5
[.k

where the interpolation curve is to be drawn through the fOl.:Ll' points
P{0.4, 1.5), Pi(1, 3), P2(1.8, 1), P(2.8, 5). The length g, — =, is chosen
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s the unit for the first reduetion, x, — =, for the second, ete. Then the
Y-parallel at unit distance always passes through the next given point.
Then this point remaipns unchanged in the reduction, so that €, coincides
with P, , R, with @, , ete. In the construction of a new point then, the
unit of measure for each interval must change correspondingly. In Fig. 30,
the points P, , S;, S, , and the correspending abscissas P, , €., Qs , are
obtaired from the given points P, , P, , P, , P; by the reduction ywith
the unit length 3, — z, . The unit for the second reduction is z,"<\z .
By this reduction, the points @, and K, are obtained, and consequently
the line between them on which Le all points B. For exa.mpie, the’ point
R has the abscissa # = 2.5; if this poin is projected by means of an z-
parallel on the Y-parallel through P,(R"), and if a hne 5 drawn from
P, through E back to the ¥-parallel through R, the pomt €} 15 obiained,
which Hes on the curve [zz,]. This point is pro]ected on the Y-parallel
through P,(§’}, and the line through it from P, is\dr&wn to the ¥-parallel
through R. This latter point is denoted by P..R lies on the interpolation
curve. Dotted lines are used in the figure for.all lines necessary for the
construction of P. Thiele” has given a siniple method for the construction
of particular points of a eurve of second order from these given points.

5. To carry out the determmahon cuf the coeflicients of the interpola-
tion curve by Lill’s method, the \methods of Art. 7 and § are combined.
First, the given function values &re measured from a peint A, on the line
on whlch the scale is to Neonstructed and the points Py, Py, P., P
are obtained. 4P, is then a, . A perpendicular to the axis is then drawn
through P, and Imes\}c drawn through P, , P, , P, whose slopes (with
respect to this perpendwula.r) are &, ~— Ty, Lz — %y, Tz — Tg . Lhese lines
meet the norma}\m @, 9., Q. , and then

P 091 {xﬂxl] =0 ; Py = [zoxs]; Poly = luna).

The perpendicular to the line Py, is now erected at @, and lines are
drawn® t\hmugh @, and @, whose tangents with this line are 2, — 2, and
x3.2=2, resp. The points of intersection of these lines then are

“\‘: - R, = [zurx.] = a,; Ry = [iwur.x,).

Finally, the perpendicular is drawn at R, and a line is drawn through
R, such that the angle ¢ hetween this line and the perpendicular is given
by tg ¢ = 23 — 22 . Then OR; = [z,z.0:2:] = &3 . The framework of the
interpolation function now has been constructed. In the case shown in
Fig. 31a, the same values are used as in Fig. 30. If further points are now
to be constructed, e.g., x = 2.5, it is well first to make the accompanying
deawing Fig. 31b, in order to obtain a more convenient determination
of the proper directions. The direction 2 — z, is so determined that one
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marks off from O, the distance x on 0P, , which iz 2.5 in this case. The
line conneeting this point with the starting point § has the slope ig ¢ =
 — %, with respect to SP, , and gives the direction of the ray OE. Then
r = 2.5 iz plotted on 0.8; , measuring from @, . The line connecting this

x

A#
Py N\
Jéﬁ? Qa2 2. R
L e 2N
P ' Rs J?.\
£
By “r BE2
- =
// gﬂ
o,
// 253 :
-~ =
o2l Rz B a4
N\
Fie. 8la o0 Fia. 31b

point with § has a tangent & — i with SP, , and this gives the slope of
ihe second line RQ. By means of%0,P; , the tangent of the third line QP
can also be found. Then P9g‘the point which corresponds to @ = 2.5,
Thesze connecting lines a<eid§tted in Fig. 3la.

6. If we have a scale in which the points lie so far apart, and in which
the distances bei@eéen suceessive points are so irregular that linear inter-
polation is no longer possible, then, according to the above construction,
the seale can{Be very easily compressed with a quadratic interpolation.
If the scalienis to be compressed in the neighborhood of Py, then the value
z = 0is assigned to P, and the values +1 and —1 are assigned to P
ﬂ.l:'l(tR:'. On the perpendicular at P, , the points @, and @ to which corre-

~gpord the values [z,2,] and [z,1,], are obtained by reduction. The functllon
[#,2] is linear. Therefore, to get the different polygon angles on this line
segment, the interval from @, and @, is subdivided in equal parts. Thfase
points have the distances a, + e.{z -+ 1) from P, . But the interpolation
funetion is

y = a,z + a.x{z -+ 1).

The lines originating at these ﬁ)oints must therefore have the tange'nts T
with respect to @, P, . To determine these slopes most simply, & umf?rm
scale, with @, 8 as modulus, is drawn perpendicular to Q.P, et 8. The lines
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from @, to the various points then give the correéponding slopes, In Fig.
32 five points are construeted on either side. The other points of the

105 Q -5
¥ia. 32

interval will be constructed from P,
or P, , snd consequently, a eriterion
exists as to whether or not a quadratic
interpolation is sufficiently sceurate in
the degree of coincidences of the dif-
ference points.

) : KoY
NOTES N ™
e
1. N aturwzssenschaﬂm 12 (1924), p- 414,
2. Thiele, Imwpolqmnsrechnung {Leipzig,

1909), p. 148. (o

2N

AY;
10. Special Interpolation Formulas.

1. We can set up the schemec givcr;,hi: 0.1 for the caleulation of the
divided differences from given values\of the funetion, in a somewhat
different way, We make use of j;ljlt?lform given below. In this arrange-
ment, the condition is fulfilled that two suceessive differences are always

" Qm T Fmed
N\ T — Ly
S
Lo Yo 2 iF_YL
31 _\-&l\ ¥ — Yo BN .
& n | O Tz — 2o} [22m] — [2:%0]
: ) W T dy | Hr — [2a:]
Lo y2¢\' »; Ly — &3 [ﬁsﬁg] - [xgxl]
y \~ Xz — %z | Ya — Yo | [@ama)
T3 .\ ?Js Ty — Ta [x-lxa] - [zams]
2R ;\' ) [Zoirn] = [ZoZm ]
\ ) Fwmi1 = Ty
o | U ;
T | h [za,4]
Tz = | [Zs2am1] — [2amao] | [2g2a220]
z2 | 3 ERZEN _
Ty — & | [Raszs] — [mamam,] | [zetstats]
T3 | Ya [e.2s2]
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identical in all argument values save one. Here also, the divided differences
of higher order are formed from those of preceding order in the way
previously deseribed. Also, the divided difference in the top row of this
table are the coefficients of the products in the equation of the interpola-
tion curve 8 (14).

An example will be given here for the application of the general inter-
polstion fermula. This formula ean be used %o perform inverse inter-
polation in tables with equi-distant argument values, in which linear inter-
polation cannot he carried out. If we consider the inverse function of the
tabulated function, this is naturally given for unequal argument 'mt.ervails

Example: The rate of interest is to be computed whenafter 50
years, the principal has been increased by a factor of 5.15254693
From interest tables', we have \

\.

3125 | 466798402 )
3.950 | 4.04883548 {7
3375 | 5257481830\,
3.500 | 5.58492B86,

3.625 | 5. 932355.63

where p is the rate of interest a.nd v = 1 1 p. If the terms are ar-
ranged somewhat differently, sot $bat we start from the value nearcst
to the given value, our sc]}eme becomes

5.25746188 | 3.375 R
—0.30862635 | —0.125 | +0.405020505

4.94883548 | 3.250 \E

. +0.63600138 | -+0.250 | -0.393025201

5.58492686 | 3,500
Y —0.92604194 | —0.375 | +0.404556083

4.85708492 3\125 '

4+1.27437071 | +0.500 | --0.392350512

5.93235;%‘% '3 625

+’G\327463(}3 —0.011995214) —0.036830519

& -0, 509476061 | —0.008014555|+0. 005028642
\ —0.29085056)+0. 011530792 — 0. 039645074

+0.98352015|4-0.004513928! +0 004589363
+0.34742877| —0.012205571 | —0. 035131146

4 0.67489380 | —0.000438279 | —0.000650890.

Then
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p = 3.375 - 0.405020505(x ~ x,) — 0.036630519(x — x.}(z — z,)
+ 0.005028642(x — z}(x — 2,)(x — w2)
— 0.000650800(z — zo){x — x)(x — ) (7 - ),
and in our case,
T —xy = —0.10401490; ¢ — x, = 0.20371145; x — 2, = —0.4323?993;
x — xy = +0.49456201. \

N

If the geners! Horner scheme. given in 7.2, is used, then X "\4\
N\
-0.000650890)4-0. 005028645 | — 0. 03663051 8[| 40 405720505 +3.§75
—0. 000321757 | —0. 002035167 | — 0. 007IT6642 —ﬁ.’(}élﬁﬁ&?l

|+0_004706885| 0. 03866504 | +-0. 3971 43&6’1{'#3. 33333360-=334%.

2. The calculations are especially simple if theMalues of the function
are egutdisiont. This is generally the ease ifipferpolation is performed
directly in tables. If the funetion values Ve !\x\ ¥ are arranged according
to increasing argument, and if we set z, =%, +k, --- or, more generally,
Z, = x4 + rh, then the increments of the argument in the formation of
the divided differences. of first ordériarce all &, and in the differences of
the second order are all 24, ete. In geveral, in the formuting of the differ-
ences of the rth order, the incréitent is always rh, We have, therefore,

i 8 mai T Ym A'ln-r-
(1} [-’G?g'ri?k} =¥ lh Yo _ hi'

Here, AL, denotes ’é? nunerator difference, or more briefly, the differ-
ence. The upper index gives the order of the difference, while the subscript
m + 1/2 deterinies the position of the difference in the series of the
differences of first order. It is the arithmetic mean of the indices of the
two values of the function from which the difference is formed. In a corre-
spondinlg;li'ﬁ.y, we have .

. e Aviare — Abirse Ay Ynsz = 2y + ¥
Y = = = w2t S =
\i?{) J {..":mmxmﬂxa_lj h-2h 21 12 P !
3

’ 2 2
(3) [xm+sxm+2xm+13m = Bnsa— sy = A:.-o-s/z = Ytz Uzt BYuer —Un

h-2h-3h 30 3m®
and, in genersl, a5 can be shown by induction,
[t Besy - - z.] = Afu_d-ltnnm - A::u—l;/s = A:wuz
I — W '

Gy
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i i
_ Yms: — (l)ym+i—1 + (2)?)(-”-!-2 ek Y
!
Aceording to section 8, equation {24) becomes

& Ay = RV Q, where ZEEE Xpa -

3. Bince the divided difference of the !th order for equidistant ordinatess
iz equal to the corresponding difference of the Ith order, &Y, divided by
I, the difference scheme can be simplified, and only the differenceg:ﬁ‘

need appear. We then obtain the system _ N\
Lo Yo ¢ ~.:“
A:;'z AN
o+ 1k #: A "\\\
A;/z A;n 4
Ty + 2h e A; \ \ A;
i A;fz 'Agh ’ Ty
....... \

where the difference is slways written betwées the two values from which
it is formed, so that each column beging :é; half row lower. The subseript
of each difference makes it possible to'determine the function values from
which it is formed. For example, (%%

ﬁ:ﬂ = A§ — A§ = A;/'z —':25}5;2 + A;,rz = 4 — 3% + 3 — %
iz compased of four val}msi‘jf_\f the functio_n. The indices of this value lie
symmetrically about 5/2\\111 general, as was observed in equation (4),

50 N n n
AL = ym+:-(z\—' (?;)ym+m’2—l + (2)ym+n;2—2 - (3)ym+m“2-3 T
{6) O
NV . r=n An _
o s(\\l')“-i(?l?')ym—nzz:/l F A=) sz = 2 (=1 (T‘)ym”/z_r )

Since didh term of the scheme is equal to the difierence of the two pre-
sedfog terms, any number in the schemne is equal to the sum of the terms
“of the succeeding column, from the first to the term which stand‘s helf
a row above the term in question, plus the first term which oceurs in the
colummn of the number itself. For example,

(1) A=Ay Al Al A= (A1 )+ (A1 — AD (83 - A +AT,

where all the terms caneel out except the first.

This property can be used as a check on the difference scheme. Thi_a sum
of any column must equal the difference of the first and last terms in the
preceding column.
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Furthermore, each difference of the scheme can be calculated from the
differences %, , Al , Al , Al , - - occurring uppermost in the various
colurnns, For example,

Az = Aija + B = Bapn + 247 F AL = Al + 347 + 345, + 45
More generally it can be shown that

. wm=nsE - 2 . “
® - a=n (", \

4. Ezample.® Various compressional forces are appﬁegl,t'd\&\fspﬁng.
The loads ¥ in kg, and the corresponding contractions %.in mm, are

given in the following table: N
mm kg al 2t {0 a
¢ 0
48.7 )
5 48.7 =;\\‘Ls
58.5 0\ 2.9
10 105.2 AN 10.7
679/ 3.1
15 1724 | W 13.8
. 3810 3.4
20 253.4 OB 17.2
' “\ Y| o8z 27
25 3516 10.9
o\ 118.1 3.2
30, o\ 1697 23.1
L\ I 141.2 33
35 610.9 26.4 18.6
R4 167.6 118.9
> 40 778.5 778.5

third difference oseillates about 3.1. These irregular Auctuations,

which become larger in the suceeeding differences, are to be attributed

&8 errors in measurement. The sum of each column is given benesth

O\t and it can be seen that this sum is equal to the difference of the
QO * initial and fina} terms of the preceding column.

S. If the numbers of a table are not exact, but contain errors of ¢b-
servation and approvimation, these errors will affect the differences, and
consequently the result of the interpolation. If an error is made in the
determination of the value of the argument of a funetion, it can be inter-
preted simply as the error of the value of the funetion, Then the function
value determined by the inaccurate value of the argument is assigned to
the correct value of the argument. The effects of such errors in the value
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of the funetion will always be the same, whether the tabulated or observed
function is to be found. Indeed, it can easily be seen from 8.2 that the
efiect of such an error on the differences will be as if the interpolation were
performed in the table of errors, because the errors in the function values
are additive. Moreover, it can be seen that the effeet of the error of several
functional values can be combined by addition of the efiect of each indi-
vidual error on the corresponding difference. If the difference scheme of
the exrors is so prepared that all the other errors are zero, and only the\
ertor, the effect of which is to be considered, is different from the zero,

the following scheme is obtained: 2 A\
Al a? al Al s O
0 ' 0 JFN
¢ 0 n\
0 o )
0 €
0 . (N ) —4e
€ —aE L
€ —2e N\ e
—€ N\E3e
1] e A\ —4e
0 N 9 —e
0 '.:D"" €
0 L 0
] ) 0

The efiects of such an eryeg\a]ways spresds out, and is greatest in th_e
row in which the errd i{ made. The effect of the error on a column is
determined by the niagnitude of the binemial coefficients. However, these
must be taken with alternating sign. This sometimes serves as a means
for determining thé“error of caleulation in a difference table.

In rounding ol the values in a table, the error can amount to no more
than onesbald tnit in the last place. In the most unfavorable case, the
following error table would be obtained. Here the errors are given in units
of thélast place:

A

\M\ ) A A A? at
) 4
+% —2 +8
-1 +4
—3 +2 -8
+1 -4
+14 -2 +8
—1 44
-4 +2 -8
+1 —4
+% -2 +8
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The error of the rth difference is therefore at most =277 units in the
last plaee. _

In a table prepared from cbservations, or in a table with approximated
values, one should not expect that the differences of a certain order will
disappear, even if a rational integral funetion is involved. Also, if should
not be expected that the differences will fall below a given value, even if
the interpolation series, which ecan be constructed for the functiopy is
convergent. Therefore, in these cases—and we shall be most interested
in such—there exists a behavior similar to that of divergent intefpefation
sertes. If the differences begin to oscillate irregularly about \zero, the
difference scheme should be terminated. We must then be content with
an interpolation funetion of correspouding order. If the“purve of the
function is to be approximated by a rational integpal/function, we are
limited, under such circumstances, to a stepwise .i‘ér}resenta’cion of the
funetion.

2'\\:

6. After these observations om the special“difference table, we now
consider the construction of the interpdlglion formulas for equidistant
Sunetion values. If we start with the funetion value g, , then the general
interpolation formula of 8(14) takesthe form

_ T — T Aipy ,’(:t:ix)(zhz)f
R T e R

)]

...< n
_— - — _ Al
\,\ihx L &= 2 = (@ — Zan) ;;!:S LR
where, by 8(25) ()

INY (2 — xadr — ) - T — X,) .cas

W BT ay e,

if £ is a.Vdlue intermediate to %, and z, 4 nk. We assume here that the

interpglation formula is used for such an interval, ie,thatz, £z £ o +

nh.Fhis formula is usually known as Newton’s interpolation formula, but

“itvhad slready been mentioned by Gregory (without the remainder) in
o/letter to Collins on Nov. 23, 1670. In general, we are not concerned

with the remainder. The formula is terminated at a suitably chosen

difference. Another scale modulus is introduced for the abscissa for greater

c;nven.ien(:e in the ealculation. We set ¢t = (z — o) /h. Then, if we ohserve

that

(x — &\}/h = (x — 2 — MR)/R =t — 3,

we obtain the Newton interpolation formula, without the remainder, from

(9):
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N+(t).*_yn+‘it—!ﬁim+t(t; 1 Af"‘t(t_ 1?),56_2} 5:!:“{"

(et —1) - (!~n+1)
(11} + n] }2
= wt{Datmt(art(ara - (Dazwr - +(Jurgs
o 1 /5 1 a/% m At o + n)Seda
The remainder takes the form Ay
. '\
. R+l cin+1) g ™
) R = (1 e,

where 0 £ + £ n, if extrapolation is not performed. { &

Newton’s formula is not useful for the caleulation Of the function values
which are at any distance from the origin. For such'walues, the particular
polynomials, with which the differences are to’ k “multiplied, have very
large values. Then the inaccuracies of the dﬁ’&rences, multiplied by these
large factors, enter into the calculated fuiaci:ion values, In this way it
happens that the differences of funetion ¥alues are determined which lie
entirely on one side of the interval. N\ v

7. Just as differences which~li¢ in descending lines in the difference
stheme have been used in,£he above interpolation formula, a formula
can also be constructed mﬁh the differences which lie in ascending lines,
starting from the ini Yalue of the function. To start again from the
value y, , we must glabdrate the difference table above. For this purpose,
we introduce nega{bi',vé indices:

Z-2 "\ﬂs Y-a A%, . _ Aty
\;\\ N ﬁnl_ 542 . A-B!S .
wX Y=z - AL, A
AN "\ Al_a;g Aoy .
w\; J . - AE.; 3 A%,
\ Al_-“rg A—-l!t .
Ta Yo Ag Ay
ﬂ:-m ﬂil/% s
] W+ Ail R +1
613;2 A'H!!% +
e Yz Aa? Ave
A‘H.xz . Ai“—"2 .
s Yus Al A
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In the general interpolation formula, we must introduce successively
To, Loy = Zo — K, T3 = To — 2k, ele, and obtain the formula

i W+ 1) .2 R+ DE+2)

A 31 A

N_(O) = é‘n + 11 A‘—uz -+ 3 1+ Y I

L KD ED k=D yp

nl
(D atn+ () s+ (P17 ad
%o + 1 P 2 -1 3 ' \m

B A A 3

(13

4

/e N\

1 3 & i"
i,\

after the introduction of the variable = (& x;)/h. The remainder
~ has the form PN

_ 4 1) --- (& + 0) L asr g “_ (t +ﬂ) n+l pint1)

00) Rury = WA DD oy = (2 F Ty
and —n £ ¢ £ 0, if the formula is ngt used for extrapolation; otherwise,
the limits must be extended correspondingly. This formula is used in the
numerical interpclation of differehtial equations (cf. Art. 32 and Art. 34).
For actual interpolation, the formulas derived below are more commonly
used, &

" %)

8. Tt is more pracb'\c\&f'to begin with an intermediate value of the region
to be representedy™hsan with an end value as was used above, Also, it is
better not to.uge’differences which lic on a diagonal of the table, but only
those whieh Ii§;~as close as possible to the initial value. This can be done
by selec!;i@}as #o an abscissa in the middle of the given interval, and
then sp{u\ﬁstituting in the general interpolation formula:

(1‘5')}’,3:0 =Zg, T =Ty — kb Zg =ty F Ry =2y — 2B, 2, = 73+ 20 ---.

'\Tk\re guecessive values of the function then lie sbout the first value, in-
creasing on one side, and decreasing on the other by equal amounts. The
interpolation formuls is then

R
n

6 ¥ =t + leomlle — 2 + [z, )lE — m)(E — 22y
16
F [rowzem @ — 2o}z — 2o ) — 2, ) 4+ e + RBaw

where, for odd =,

(x_%)(x_z—l)(x_';":ﬂ)' - '(x—x-ca-n/z){x—m<..~m:)f‘"”’($l
(17) Rs!d (n + 1)!
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inwhichz,—{n — 1)h/2 < &£ £ 1, 4 (n — 1)h/2. For even n, the last factors
of the numerator are

(& — Topme )@ — Tapz- )& — Zna)s

This is the so-called Gauss interpolation formula. If the difference symbol
is introduced in our special table, we have

¥ =g+ Al i _h %o) + gif.' & — xo)}Eg; — .1 A
(18) A
Al & — 2)e — )@ — ad) o
4 2o N A P\
31 hs < \W/

L 3
P

and if the variable £ = (z — z.)/h is again introduced, “\
. L W

f 1y
Gl(t) =Y + Al..l/gt + Kt_;:i'}l Ag + -tLtTD Afl’!;
g il
+ H — El(t+ 2)“3:;}“
(i9) R N\
1 14 .“g £ i
S 4 PR ;};’) g+ (thY) s,

ol

it + 2\ . C+ﬂn .
’iz ( 4 ) Ay + 5 Al ’

where the remainder is \\

Q_z+m+wﬂwn
o) B = (1 E D) e
for odd =, and x\

:"\:‘.
o) Rus = (L5100

for eveir'n. The value = is intermediate to the limits of the argument. In
Kﬁl"i@uﬁnula, the differences are used which lie in the row of y and h:a,lf
26w higher. In the same manner, a formula may be construeted which
uses the differences of the row of y, , and those which Yie a half row lower.
This formuls, is obtained if the argument values o, Zo + B &0 — h Zo +
%h, 3o — 2h, -- are introduced in the general interpolation formula
8(14). After the introduction of the variable f, we have

1 -1 .., {1
Gﬂ(t)=y0+tAu2+!(i§_)Au+’(_‘3!_lﬁus
(22
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+£§ = 1)t —2)

4!

é‘;

09 6w =vo+(Datat (Har+ (] 1 st

P (5 O

N
AN
A\ *

s = (t +’£n+—11)/2)f ).

with the remeinder (21) for even n, while for odd =,

#%7

o\
9, Since these formulas exhibit a certain asymmetry; the mean has been
formed. The formula which is then obtained is kwewn as Stirling’s infer-
polation formula® \ ’

S(;)-_yn+t‘5;1{2ﬂtl&+2' As‘+ ZA—1/=+6+12

29 O D

— &5 -5, £ —1
= w0+ @ gy + U Yy BE =Dy

4!
where we write N \\

N O T
for the méaof two successive differences. The remainder is equal to the
anthme\t@c mean of the remainders of the formula (19) and (22). Stirling's
formuis iz especially useful in the neighborhood of the value ¥, , because
L ‘the immediate vieinity of y. , the values of the polynomisl are small
\ and consequently the effect of higher differences and their errors are small.

10. The formulas which have been constructed can be used to increase
the number of values in & table; i.e., to insert cither values between the
between the given values. This interpolation is convenient only when the
tabulated values lie so close together that the curve connecting them can
be approximated by a straight line; i.e., whenever the seccond differences
are 50 small that they can be neglected. Then we have linear interpolation,
as was discussed in Art. 4. To simplify the calculation in the general case,
tables are used for the polynomials with which the particular differences
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are to be multiplied, and it is customary to subdivide the interval into
ten or one hundred equal parts, All the formulas developed so far are
especially advantageous for interpolation about a point. Because of this,
such tables are usually given between the limits —0.5 and 40.5.4

11. I, in addition to G, , we construct a formula analogous te G, |,
which starts from ¥, instead of ¥, , and which therefore uses the differences L.
of the eolunans 1 and 1/2, we obtain \

_ _ oY
G =g+ ALt~ 1) 4 2 U= Dy e (= DIE— A

21 30
L — DE = 1) ON
-+ Al it i I m'\\.
()
—- ¢ \
=4+ A;,,(‘ 1 1) + Af(z‘) + A’:m(g)z\\ -
‘..x\ it
e ) et 9
with the reruainder . ~.:“.'~‘
_ i.+~(r;,’—’- 1)/'2) (n+1)
{25) R = (\~ 1 7
for odd », and \\
O /e — 2)/2\ s
26) :’?”‘“ = ( +1§n+ . )/ )f‘ V()

for even n. Hera:i;}so, r is a value between the extreme values. If we form
the menn ol’{&"ﬁnd G, , then we have Bessel’s interpolation formwfla. The
differenced. of odd order common to both formulas lie in the middle of
the intérval O to 1, while the various differences of even order lie at the
IQM} “The formula becomes

AZ 4 Alir — 1)
Ry = O A e

2 HE— Dt — 1/2)
(27) + lﬁ11’2 3!

AF A —E - Y
9 4]

+
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Since A}n =% — Yo, (g +- y)/2 + A:!‘Z(z - 1/2) = yo + A:N , and
the Bessel tormula may also be written in the form

Ht— 1 s HE— D{E— 1/2)
2! + Az/z . 3I

B(t) = yo + A;zzt + A?/s
8)

Ht— 2)(# — 1)
+ Al ( .

o "t O\

where the barred terms represent the mean values. The remaitider is
again the arithmetic mean of the remainders of formulas (22} and (24).
The factor { — 1/2) enters into the formula from the ijrﬁiation of the
mean value. Bessel’s formula is not used for interpolation in the vicinity
of a point, but for interpolation throughout an entiIQ interval. Therefore,
tables are given for values of the polynemial fronidto &1.°

Occasionally £ = r + 1/2 is introduced as aNitew variable. Then the
first form of Bessel's formula {the more conve t form} becomes

ﬁ (72 ) 1)

_Yt+nm 1 A%
B(r +1/2) = IL“—Z"— + Al’;srr”fi- o1 1
(29) ™

A® <N 2L
R R G SR e

SN g

where the bars again indigéte mean values.
K®)
12. Ezample’XThe value of the principal and interest sceruing on
one dollar at/8,1/3% for 50 years is to be computed.® From interest
tables we ]'.\\ﬁve

D ™ At Al Al at
3,@5. "3 | 4.65798402
0.29085056
3.250( —1 | 4.94883548 0.61777579
N® 5.108148655 | 0.30862635 | 0.018307255 | 0.00106289
V'Y 8375 0| 525746183 | 0.81804569 | 0.01883868 | 6.001083975 | 6.00008217
0:32746503 0.00112506
3.500| +1 | 5.58492686 0.01996374
. _ 0.34742877
3.625| 42 [ 5.93235563

If the fourth difference is assumed to be constant, it follows from
Bessel’s formula (if we start from z = 3.250 and set ¢ = 2/3),

y = 5.103148655 -+ 0.30862635(1/6) - 0.018307235 313_><1_(_2"_1@
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2/3 X {—1/3) X 1/6

-+ 0.00106289

123
+ 0.00006217 22X (1?2/?’%.?; (—5/9)
— 5.103148655 + 0.051437725 — 0.0020341372 — 0.0000065610
+ 0.000001279
= 5.15251696. O
By Stirling’s formula, we have for t = —1/3, A\ O
y = 5.25746183 — (%) 031804560 + (%) 0.0188386?3“"\2'
+ (i) 0.001093975 — (——1—) 0.00006217
81 313/ 3%
= 5.15254695. O

A

If we were to start from z = 3.125 ghd Tise the Newtontan formula
N, , or use N- starting from 3.625, e would have obtained the same
values only that the factors with which the differences would be
multiplied would have been Iazger. But other values could be ob-
tained i, starting from 3/350 or 3.375 we used either the formula
N_or N, , since the fodith differences are not then constant.

\\..

13, For interpolatign:'m an interval, a form of the Gaussian formula,
due to Laplace,” ¢an’be given, in which only those differences appear
which oceur in tl}ﬁisei'ies of both values between which one is interpolating.
If we substi%;@xéhe even differences of next lower order in

N
0\ H 1
Ao =vot () atat (D m+ (*% 1) &
AN
@‘3 i t+1 t+ 2
' (A (L)t
for the differences of odd order from which they are formed, we have

6 = v+ () & — 90 + (Ha+(f)w-a

(222)
+(t-:1)A=+(t-|g2)(A:_A;)..._
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If we further observe the well-known relation between binomial co-

C13=L;J+®’

we can collect the factors of each difierence and obtain £\

‘efficients

3 3
@0} \

D,
N

R SARY t+,2§
( 5 )All"'(m&g. Al H

Gty = (1 — Do + y1-t — (t) a5 + (! + 1) af :.\f‘~.\

or, in a somewhat different arrangement,

‘x:\\.,‘
a0 = a - owo = () 2 {55 ) st
@) o\
L .1') 2 (c + 2) .
-+ ':'Ul +.(‘3 A + 5 Ay oo
I weset I — ¢ = r we obtdin ;‘Aile formula given by Laplace®
Bo=cnt (E N+ Dt
32 \,
s+1) 2 (z+2 .
P\t .+ iy ( 3 A + 5 Ay - -

¢ .\} /
Tablgs’m.be used here also for the coefficients.

N\

\“14. Ordinarily, one is not further interested in the remasnder ferm when
working with interpolation series. It is assumed that the term is small
enough to be neglected. Nevertheless, it is advisable to observe the
magnitude of the first difference which is neglected. This gives an ap-
proximate measure of the magnitude of the remainder term, and gives
the eomputer & general idea of the magnitude of the formula error. The
error caused by neglecting the remainder term is not always small through-
out the entire interval. But if the argument intervals of the scheme are
so small that only a few terms of the interpolation formuls are needed,
and if we are satisfied with a limited aceuracy, then we can in general
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get & good appreximation. However, if we want to extend the interpolation
accuracy over a certain interval, in the case of a non-vanishing remainder
term, for rather large intervals, we can obtain incorrect results, because
the temainder term. should not be neglected. We shall omit here any
investigation of convergence, by which it ean be proved that the inter-
polstion series are frequently semi-convergent series. It could also be
shown that the convergence rates are better for the Newton series, used
for practical ealeulations only within the limits of the tables, than for{
any other series, although in these latter series, the first terms giveia
better approximation.” We are interested in interpolation series frond ¥he
viewpoint of practical caleulations; the convergence itself is mob im-
portant. We are concerned with the inaceuracy, and this is to bewieglected
if the remainder term is small after a few terms of the series/] \
&

1. In conclusion, we will consider an application, of interpolation
series.”® Tn {he statistical analysis of fluctuating precesses, we determine
the number of individusl cases which lie in a certrmiﬁ‘ interval of variation
of the fuctusting argument. If, for example e  want to determine the
relative heights of a group of people, then buf:e'detennine the number of
people whose heights lie between 140 snd 145 cm., between 145 and 150
em., ete. If these numbers are available, the question arises: how many
people have a height which lies between narrower limits, e.g., between
162 and 163 em. ~

Tiyn, s , - - are the values(of the function between the desired smaller
limits and 2r + 1 of these ¥alues, taken together, give the value in the
table for the larger inber:vN,, then

-{f-;-l)

W dr . ar+l B Sr+l
@Y= 3 W= D= U 2 S 2t
—tE3r+ 108 ) —-r r+ r+

Then we ca.Kintyoduce a function
O\ N , (2relyz=r-1

(34] 2 }; 2z = Eﬂ Ym

mbrd;r to calculate a value g lying in the middle of a large ir}t,erval.

Here p is a completely arbitrary number. By means of this function, we

can express the values lying in the table as differences of the first order:

(35) i Y, = b:-ﬁ-l!? -
Furthermore, 7, can also be expressed as a function of the z's:

(36} Yo = Fr2ris202eetyr T Z1s2-1/62080+10) -

If we now introduce the values 7 = =1/ @2 + 1) in Bessel.’s formula
(29}, we get
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_ ¥ — 1/4
Bm(% + ﬁ'l+—l)) = Tz &= At + Af/s(T)
37
2 — 1/4 P — O = 9/4)
* Al 1’(—’—5,—& + i, sz o
and if we form the difference, we have A
Ly L) gl L) A
3(2 + 202r + 1) B 2 22r+ 1) \' \..'\
(38) O
< — 2(7? — 1/4)(FA +9/4
= 27Al, + 2r(r 3t 1/4) Al 4+ u /5);(1: S / )Alsf:

L
If we recall the equations (35) and (36), it follows that}\

(" — 1/4 \
Yo = 217, + Ti(r = /4 AXY ‘,:\\"
‘\ w
2r(r* — l/g)r(tz:f.g/é) ALY .-
If, for example, we assume thatﬁ;i‘félhes of y are given togetherin ¥,
then, by (88), 2r + 1 = 5, and therefore r = 0.1. From (39) we get
(40} # = 0.2Y, —Q008A%Y 4 0.000896A%Y ... .

o\
Ezample: According)to the German mortality table, of 100,000
people who reach\l}eir 20th year, the number of people ¥ is given
who die in tbgv%;sious 5 year intervals following that age:

(39)

-+

(N Y A A As At
a\]
T
20\.42&' 4040
W 72
‘.‘E%‘—SU 4112 267
RN 339 + 71
W) 8035 4451 338 —306
\ } ' 677 9235
35—40 5128 103
780
4045 5908

By the above formula thercfore, in the 33rd yeary, = 0.2 X 4451 —
0.008 X 338 4 0.000896 X (—306) = 887.2 people died. Actunally,
the table gives the value 888.

Naturally, such good results are not obtained for arbitrary values.
For example, we consider the coal production in Prussia; this amounted
(in thousands of tons) to the values in the following table:
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¥ At A? AR Al
1807—1901 | 471740
4 90837
1002—1908 | 362277 + 55234
4145771 — 118641
19071911 | 708048 — 63407 —7756.
4+ 82364 —126397
1912—1916 | 790412 —180504
—107440 .
1917—1921 | 682972 AN

Consequently the preduction would have been 3, = 0.2 X 708,048\+
0.008 X 63407 — 0.000896 X 7756 — 142110 in 1909. Iu‘reality,

not 142,110,000 tons but 139,806,000 tons were mined. ,Til'e erTor is
therefore & 1/2%. ' )

NOTES )
y \\ /

1. Fomster, Politische Arithmetik (Leipzig, 1024), p, 335 Spitzer, Tabellen fiir die
Zingesinsenund Rendenrechmung, 6th ed. (Vienns, 1922T\N/

2. From an example by B. Rothe in his lectures, .

3. Newton, Methodus differentialis {1711}, P;cfp’,, TII, Case 1; Stirling, Methodus
differentialis (1730}, Prop. XX. N\

4. For example, Bruns, Grundlinien des wistenschaftlichen Rechnens (Leipzig, 1903},
pp. 43-44, Lindow, Numerische I nfinitesimalréghinung {Berlin and Bonn, 1928}, p. 158 ff.

5 V. note 4. L :

6. Forster, Polifische Arithmelik fTwipzig, 1924}, p. 21.

7. Laplace, Théorie analyligue g probobiliiss (Paris, 1812).

$. This fommuls is slso knowh, s Everett’s formula. Bréi. Assec. Rep. (1900).

9. Norlund, Differenzenrethnung tBerlin, 1924}, Ch. 8. :

10. King, Journal of thc\'f welitute of Actuaries, 43 (1909), p. 114

@

\.§ ./ 11. Numerical Differentiation.

1. Up t8'Bow, in order to avoid ambiguities, we have assumed not only
that-the Function values entering into the difference scheme are single-
Vahi@d“ and finite, but also that the argument valies are all different. We
shall now remove this last assumption. For example, if any two argument
values z, and z,. are equal, then the divided difference of the (r — m)th
order

(1) [ZeTn - Tooam,] = i T, — T

is indeterminate. If f{x) possesses & derivative at o, , then this expression
tends to a Yimit for z, — Zw, and indeed, we have
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lm [Znwes = * Trei] = [ZnTars 7 Tri]

Ereitm

2

[I'mxm+l T xr—-l]-

Ble

This expression is known as the divided difference with repeated argumen.
That the condition: f/(z) exists for x = z, is sufficient in order that the
divided differenc¢e with repeated argument have a determinaf@ §alue',
follows from the considerations below. According to 8(10), OV

{mm e xr-l] . Z\;}

- fix) ) :":’«:

B (I - x!n)(x - zmi—l} TeT (1: - xr-‘l) o'{:‘
+ Iz S

(23') (e — D(En — Im-i-l) v (x,,\—‘x,._l)
P\
+ Jelh)
(Zm—l - ﬂ:)(fmu - x.Qﬁ%n ha xmu) re (xmu - $r-1)
fed)

@ — D)@ SR @ — 20

If x is allowed to approach ’:v,.{; then the terms from the third on all have
a finite value. The first two terms are not defined for x = z, . We must
therefore find their ln:pf{ Since the limit of & product equals the product
of the limits of the ﬁ\ﬂicgbrs,

N
. \ Jlx)
P G = Gee) @ = 5D
o - f)
& — lim
\J sozm G — xm)(xm - mm+1) - (23.., — x,_,)
OIS
e = 1 - flx) — fza)
w\:‘;\.: ) (xm - $m+1) e (xm - x,-._1) LH: £ — Fn
\ - F'(xg)
(@n — Tpes) - (B — Bos)

In particular,

{4) {zz] = f'(z).

We can also form divided differences with manifold (say I) repetitions
of the argument. These differences will exist if the first [ derivatives of
J(z) exist. It should be mentioned here that
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o --- 2} |
(5) n P = | ).
This follows directly from 8(24), where the relation between derivatives
and divided differences is given. 1f we let the (n + 1) values x,, - -+,
z, approach z, then the intermediate value £ also converges to =z, since
¢ lies between the largest and the smallest of the values 2y, -~ -, Z. .
The general Newton interpolation formula goes over inte Taylor’s formula
wilh the use of these divided diffcrences with repeated argument.
N

2. An epproximate value for the derivative of @ tabulated fwrwtion.cén\ 'b\e
formed on the basis of this conmection between divided difficrences’with
repeated argument and derivatives. Naturally, we can also fndNapproxi-
mate values by termwise differentiation of the general Newt;&'m interpola-
tion fornrula.' Consider a table of the cubes of the prime?mumbers; i e,
5 table of the funetion y = 2°, with varying argument witervals. To find
the derivative for z = 9, we make uge of the table bxegsw, forming according
to the scheme of 10.1: L ¢

1 1 N A W
. 1 7 7 «™l
2 8 2, N a2 8
1 19 19 4 4|1
3] o *3 l 30 0
2 08 a0 b 5 5 | 1
5| 126 & 4 60 15
2 218 im?\ : 8 8 11
T 343 W G 138 23
4 983 247 8 g |1
| 1 ] 186 a1
2 Bﬁﬁ"l 433 2 2 1
13| 297 e -2 —66 33
—1 1468 367 N 2 -2 |1
oS : - —124
8 TN ) 4 I R I
o 0 243
9 7200 N = 0 o ﬁ .
™y 0 0 243 0 0 L
LN 0 0 27 ol 3
N\ 0 0 243 |9}
AP B . e 0 | 4oz —162 | 2418 ol
=0 | 26~720 | 2292+ 81 —49 | z—
& z c—0 | 227 —9r—81 | 2u+8
1} 1) Axt =9 | z—9 1
= 0 3
z k-4 1] =
Q ¢ A £=—0 1 z—9 ;
F £ r !

In the representation, the scheme is carried out to the constant third
difference, and is further built up beyond # = 13. From the known argu-
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ment differences and the known divided differences, we can form the
differences of the divided differences of the preceding column. It can he
seen from this arrangement that the divided differences with repeated
argument can be caleulated very simply. The underlined values give, for
x =9y = [zz] = 243, "’ = 2[zaz] = 54, "’ = H{zzax] = 6. Further-
more, z is then introduced as the argument. The underlined values give
the derivatives, except for the factors 11, 21, 3! ~

3. Exzampic: We seek to calculate the derivative y’ ——jsgl — f¥
for z = 0.341 in the example given in 9.2. For that purpp\ée‘,‘\fe repeat
the table here, but now use the scheme 10.1 and carry it on with

the repeated argument x = 0.341: N
0.074 | 0,152 : Y,
0.024 0.084 |0.865 Ny
0.14% | 0.218 0.158 | <0n734 | —4.65
0.084| 0.011 [0.131 \ 0.280 14.31 [15.5
0.232 {0.227 0.208)20.070 | —0.340
0.122! 0,008 [0.061 - 0.103 [2.99 {15.5

0.354 | 0.235 QO‘:I;BQ 40,289 |4-2.65

—0.013 | —0.005 {0.350 0.108 11.69 |15.5

0341 [ 0.230 o\ |—=0.013 |—0.057 [-+4.34 1
0 0 _j02e2
0.341 | 0.230 &N
Therefore the rate of ‘cﬁé,nge of the osmotic coefficient with the
concentration is f/ /=“N-0.293 at 2y = 0.341. If we can terminate

the difference scl}gjr’n} with divided differences of a comparatively low
order, the calculaiion of a differcnec quotient by means of the divided
differences with repeated argument is comparatively simple. But it
must be agsumed that not only the function to be approximated, but
also the: dérivatives of that function are well represented by the
inte.m(}ation function in the neighborhood of the argument values in

gtkésﬁnn.

J4) If o difference table has alrcady been set up for equidistant values

\ of the argument, then we can start from the repregentation of the function

) by special interpolation formulas and differentiate these termwise. This
is permissible if the function and its derivatives are approximated with
sufficient accuracy with & few terms. In general, only Stirling’s and
Bessel’s formulas are used. We shall also use Newton’s formula N_, but
only in 32.8. There the corresponding values are also given. We recsll
that we have introduced the variable { = (z — ,)/A, that, therefore,
df/dz = df/dt-dt/de = df/di-1/h so that df /@l = hf'(z) and if we write
A7 = (&% + Af2)/2 for the mean of two successive differences, we
obtain for the first two differences, from Stirling’s formula 10(23):



NUMERICAL DIFFERENTIATION 117

B 8@ = a
2
+M+Aa3t +A.,4t +Ag5‘ 158 + 4
al 51
88 — 208 -8 . T — 708 -
. + A . + + AE.” Qi 4;!1471;’ 36+
&8 . A o
= *8'"(z) = A% e\
W@ K
-~ 128 — — 208 i AR
R O
KV
* _ g0g = 4915 — 280842044
B =B F8 i 8;1‘* SRR
and gimilarly, from Bessel’s formula 10 (27) \~
dB 2t NVBE — 6F+ 1
ﬁt hB’(x) = Auz 4+ A?.:‘s a5 + A‘uz "‘_"_1_2_"—
-~ — 32 — 18y ’ Bt' — 108 + 5t —1
+ A:}E 2t 3t12 t + + Al}i 120 + MR
) .
— 6 —6t—1
48 = W'B"(z) = A1miq* Al 2t + Alp =9
T L 12
-6 1
=S ZI

Tables hayi &o been prepared for these polynomials.” In general it
is 50 arry ed that the values of the derivatives are formed from the
first group%or the argument values from which the interpelation formula
hﬂsbgen ‘constructed. Therefore { is set equal to zero in eguation (6):

oo

) < 17 = 1
) S0 = k8@ = - gt 58— TS 83 -
®
1
S"(O) = hgs”(xg) = Ag - 12 Ag + Eﬁ Au =t o,

In eguations (7), which sre derived from the Bessel interpolation series
{and which are especially good approximations in the middle of the in~
terval), we set § = 1/2 and obtain the derivatives in the middle of the
interval
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1

24 Afﬂ!"':

Al — 57 Al + 21

. h
hB (xo _}‘ §) 640

© h 2 LI 259
th”(n"ia + §) = Af{z - 24 Auz B al=rr 5760 A1/2 nt

If we have the derivaiives for other values, we can form a difference
scheme for the values calculated, and then interpolate the desired values.
In the formulas 8 and B/, diffcrences appear which are alreadyin the
tables. These formulas are therefore more convenient than,8\and B",
in which mean values of two successive derivatives appeay: N we want
w nse these formulas, it is advisable to tabulate these mefriyalues. These
are calied infermediate values, in contrast to the pmmapa.’. velues already
in the table. The mean values are tabulated in\the* difference scheme
before beginning differentiation. This has beenNdone in italics in the

examptle given in the next paragraph, :.\\,’

\
5. Example: In the digging of & min® ,s'lfaft, for each drill, the square
of the velocity is plotted as a function of the time by means of &
Karlik velocity meter. From sieh a diagram we record the velocity
second by second for the bcgmnmg of s drill. The acceleration is to
be caleulated from this table

i [ ."\ 1 +1
geel m/sec Al ""A‘e Al B'{z) 8{x) fB(t)dt fS(z)a‘t
'\ h 4
oo N
1975} 255 | —0.24 | —0.02 1.295
1 \%,5} 2.475 | —0.25 5.017
Arsr0| 230 | —oes —003 | zam 3.723
ey 485 | zis0l —0.28 | —0.095 2.166
m;'\" 6860 | 202 | —0.800 | —0.0¢ 2.022 5.885
\y 3| 687 | 1.860| —0.32 | —0.080 1.868 13.633
. 7780 | LY0 | —0.880 | —0.00 1.700 74T
¢| 857 | 1540 —0.32 | 40.010 1.538
9860 138 | —a.si0| 4002 L.379 9.286
51 995 | 123 —0.30 | +0.0% 1.824 19.500
16490 108 | —0.275 | +0.05 1078 10.513
611103 | 0955| ~0.25 | +o.070 0.948
114451 083 [ —0.795 | 4-0.08 0.826 11.461
71886 | 0760 | —0.14 | 40.095 G744 23.673
18855 089 | —0.090 | +0.10 0.586 12.268
81265 | 0679] —0.0¢ | +p.095 0.654
12975( 065 | +0.005 | +0.00 | 0446 12.975
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H v X Iy +1
sec | m/sec At a? Al B'{z) Stz | fBwdt | f3ma
L] —1
9 }13.30 0.675 | 4+0.06 | +0.050 0.667 26.617
13650 070 | +0.048 | 4+00L 0.700 12.848
101200 | o©720| +0.04 | —0.080 0.753
h1asv0| 074 | —0.045 ) —0.17 0.747 14374
11| 1474 0.675 | —0.13 | —0.180 0.705 29,437
15045 061 | —0.285| —0.19 0.618 15.064
1211535 | o460 —032 | —0.085 0.464
15.485] 029 | —0.810| +0.02 | 0289 15.521 O
181560 | 0240 —0.30 | +0.140 0.117 31300
15685 | —001 | —o0.170| +0.26 | —0.021 15858 I\
141563 | —0.030 | —0.04 | 40.160 —0.058
15605 | =005 | ~oo10| +0.06 | —0.053 15608
15 }15.68 | ~0.040 | +0.02 K& 31.166
15.565 1 —0.03 | —0.055 ‘\a5.570
16 | 15.55 180,578 m{180.524m.

The acceleration values for the half sec
from the principle values,
aceeleration values for the seconds,
ing’s formula, are given in italics.
for the beginning and end of an. 51;11;&3*%1,

"

N

x(;1,\ which are ealeulated

are given s ptdinary print, while the

whigh are caleulated from Stirl-

mented by & standard third djﬁerence.

6. With the first two forhulas (8) and (9),
sidered which reserbles t.lrf@t of 10.15. Many
give the value of the, fﬁg}
desired function ovey fini
meters give only Jonrly v
from the ot.he;'oxgeteoro

values mustsbe'derived

logi,
: from the hourly values. The
the hmcjt&%a)’(x) are 1/k =" f(x) dz. We now set

tion to be measured

I’ the accelerations are desired
the scheme must be supple-

a problem may be con-

measuring devices do not
, but a mean value of the
te time intervals. For example, many anemo-
alues, while instantaneous values can be rTead
cal instruments. For comparison, instantoneous

given mean values of

Y e n-r@= [ i@ =
<P
f f@) dx = Al - -

ath
The difference table is then constructed from these first differences, which
ate taken from the listed values. Then the integral funciion F(z) can be
approximated by the Bessel formula or by the Stirling formula, From
this, the derivative F(z), i.e, the nstantaneous value of f{x) can be
obtained most simply for the center or ends of the interval from {8) and
(9).



120 PRACTICAL ANALYSIS

7. Innumerical differentiation, as well as in integration, we are generally
not concerned with the convergence of the interpolation series. We care
only that the interval width is so chosen that a difference of not too high
an order will be small enough to be neglected. It can readily be seen how
doubtful is this ecalculation for differentiation because of the appearance
of the interval width k or A® in the denominator. A good approximation
of a function is not necessarily a good approximation of its derivatives,
85 is easily made clear by a figure. If we have an absolutely converg\ent
series, in which termwise differentiation is permitted, then on ene hand
we must not take the interval width h too small. Otherwise{for.the at-
tainment of sufficient accuracy, we would be required to know the de-
nominator k or k° to too many places for the individual*funietion values.
On the other hand, the intervals must not be made ¥66 large, since then
we must use too many differences, some of whiclhreannot be determined
as a consequence of the propagation of the rohiiding off error. Then in
each case there is an optimum value of the interval length, which is not
generally specified. If we are dealing with di 'e}gent series, then the above
formulas can stifl be used for the numérical caleulations. In this case
the differences will fall off very rapidly &t first to a very small value. Then
they will increase again. The series up to the smallest difference can give
a useful approximation if the high differences (which increase in value)
are neglected. We must therefb,i'é see to it that we obtain a useful ap-
proximation with the smallest® possible number of terms. We therefore
disregard the poseibility{of" obtaining general expressions for the co-
efficients of the differenfiation formulas, as is possible for the case of
equidistant argumeni\%lues (by means of Bernoulli polynomials). Instead
we must content{Ourselves with the first members of the series given
above.® 72

R NOTES

1. E()‘r\éxa?mple, Bteffensen, Interpolotionslzere (Copenhagen 1925), Art. 7.

fééli;:}emmple, Lindow, Numerische Infinitesimalrechnung (Berlin and Bonn, 1928),
p- JO6I.

("8 Norlund, Differenzenrechnung (Berlin, 1024), Ch. VIIL, Art. 7.

\
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12. Numerical Integration.

1. Each of the interpolation series derived above can be used for the
numerical integration of a funetion given in tables. We do nat consider
the development of formulas for tables with uregually distant function
Tra,lues, since they are not clearly arranged, and the ealculation required
in their use is very intricate. In comparisor, the integration of a function
for which a difference scheme of equidistant values already exists requires
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very little work and yields an estimate of the error resulting in the inte-
gration.

2. The integration formula obtained from the Newton interpolation
formule N, had already been given by Gregory in a letter of Nov. 23,
1670 to Collins. It is of little interest to us and hence will not be derived
here. ~

On the other hand, in the integration of differential equatlons, 3249,
the integration series resulting from Newton’s formula N_ is often ‘u\sed
If this formula is integrated termwise over an intervel, the coeﬂiclent of
the mth difference becomes g &

o

4 =ft(t+m_'1)dt “.( N
" A m . ’\.\.

Ef this is evaluated, we obtain®

[Tiwa=nf Nea- h[ya e bar,+ 2,

N ! 19087 o
® T8 3 22 + 2o 720 4% + o5 288 Khe 2+ G0 60480 22
+ 1.5722581} Al + - 1‘[‘ “F, , where —n £ M £ +1.
n+ £ 1 F4 1 .
@ B, = [ HEED b= D) oy g

If 7™ () is contimmﬁs\the mean value theorem of the integral calculus
can be used, since{ihe other factors of the integrand do not change their
signs from 0 te, ;L sWe then obtain a somewhat different form of the re-
mainder tergz\

@) \\"J\?= B ) fﬂ 1 (‘ tn 1) at = O ),

whefe —pn =y £ 41
I?ltegrs,tmn can be performed over two intervals, from z, — hto 2, + A,
\]ﬁﬁt as well as over one interval. We then get a formula which is especially
distinguished by convenient coefficients for the differences. This fermula is

fm (x)dx—kf N(t)dt_2hyo+h[ A_1+ Asm

)
29 1139 123

+ % A—z + Ai.a/z -+ a7en 3780 + A0 Az?!z tt '] + Ra.,

where, for the application of the mean value theorem the remainder term
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is to be divided into two parts. For practical calculations, the ahove
formula is best used in the form

f " ) de = Zhyo + %h[a’;l A+ AL, 4 AN 4 A%
(5)

i 1 121
Al t e —gg At = AN g A
17 T ] N\
- S |+ B.. AN
140 PR

3. For ordinary quadrature, it is customary to usesthe formulag which
follow from Bessel’s and Stirling’s formulas. Thege require less work of
calculation because the coefficients of the high powers diminish rapidly.

The integration of the Besscl formula, 10¢28), over an interval gives

nza+h 1 # \: -
_j: F@) de = h fo B@) dt = k({;,;}- % Al — é AL,
) NS

11 -3 Jef 2497 5
+ -‘7% A:/2 ‘—,604 80’ A?,, + 3628800 A:ﬂ " ) + Ba )

where here, for —n + 1 = 'r’:g n

@ R = RO (),

it ¢ denotes the il}psg\ral over the corresponding function of the Bessel

u_1terp01§t10n forguls’ The use of the mean value theorem is possible,

since this function does not change its sign in the interval of integration.
If we wantbo calculate the value of the integral for a larger interval,

?,nd if the :h'huts of this interval coincide with the limits of the entire

mtef'\fgl\;}hen we can write down the sbove formula for a series of suc-

cesstye Jntervals and sum these terms. We then get

N\ =1

Tetah r—1 _
T, 1 L e—1
N N . j f(x) dz = h{ 2+ 5 > Aheiz — L > By
\{8) Ta A= 2 =0 12 =il

—

S
+_7'jm_) uAM-:/s .+R2n'

=

-NOW, Siﬂce fsinﬂ = a1 — U¥a, t.hen Z::; A‘\J‘_”2 = ¥ — Yo 50 t.ha,t t.}le

first two terms together give X750 % — (70 + 3. /2. The other sums
may also be expressed by the differences of differences of lower order.
For example,

-1
H =1

2 a1
(8a) ,\Z.:‘,A" = bBeoipe = A'l'l-’a and Z Ay = A:H;‘s - ﬁ:fs
A0
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ete. If we introduce this in the above fomiula, we have

I wx{z——c}

.

11 % T - 191 5 e

AT g \
+ 36288m (A‘ AO) + -i-\ Rzll L
where A7 = 1/2(A%%./ + AZ1,2), and where, for — (2 — 1) £7 (@9 «,

Rh — Khsui-lcf(ﬁn)(?)' ""‘ N
4. Ezample’ In the example of the compre d{é’pring given in
10.4, the energy stored in the spring is to be ediaputed as a function
of the contraction. Since the intermediate walres are found in the
Bessel form, these are introduced firss. Thlsétves the table below, in

which the intermediate values are gwen m‘rtahcs

TABLE L _
Ty E B
h ¥ Al at N\ a3 i1 mmkg mkg
44 Ny

0 ) 46.35 A AT

24.95 4828} 685 | 31 £3.83 118.18 :
5| 487 ) 5{.‘6.’ 7.8 500

7695 | 56 995 | 29 76.18 280.50

10 1052 &§)61.85 | 107
183804 61.2 1225 | 3.1 187.28 £88.90

15 | 1724\ 7410 | 13.8 1747
91800 81 1560 | 3.4 | 21181 | 1058.06
20,2634 8960 | 172
N 808.50 98.2 1865 | 2.7 | 80095 | 150475
g5 3516 108.15 | 19.8 3549
b | 41068 1181 2150 | 32 | 40886 | 204430
N 30| 4697 12965 | 231
) 540.30 141.2 2475 | 83 | 53824 | 269120
35 | 6L0.9 15440 | 264 6153
694.70 167.6 2785 | 3.1 | 698y | 346185
40 | T78.5 18235 | 20.5
197.1 : © o 11ms.10
Z | 27904 2339.82 11649

To ealculate the integral for the first interval, we must interpolate
above the lines drawn in the table which limit the original scheme,
The intermediate values here are also formed. The column designated
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by [ ] gives the value of the integral, not yet muliplied by &, of
the individual intervals, while the next column gives the actual valye
of the integral in mm. kg The total stored energy has the value of
11.95 m. kg. As a check on the caleulation, we make use of the Bessel
formula for n intervals. This gives the following:

Sy = 27904
y= 2 ~
- oty = —389.25 O
NS *
- 'fé (AI-E/E + An/s) = - 15-%0( "}“
1 ¢
+ ﬂ (A -+ 31/2) = \3-86

[ ] =2380.81.

This is in good agreement with the,’sﬁm of the corresponding ¢olumn
of the table. OO

As a second example, we codsider the completely analogous table
of changes in velocity of ].,15 In the column labeled. [y B(!) df are
tabulated the distances Covered in each second. As a check on the
sum 180.578 m.; we again use the formula for n intervals. In this
case - :

"T’\fl"Bsd 180.5
\\ o () t = 180.56.

Since this agi:ees within the limit of error, the total values are there-
fore chepleéd.

If the lifgﬁt"s of the integration interval do not coincide with the limits
of th ""j;}riral of the difference scheme, we must use tahles for the func-
tion,g ich appear ss factors of the differences, or we must calculate the
value of ihe integral up to the values of the argument which are adjacent

(80 the limits of the integral. We then form a difference scheme, and inter-
\ Jpolate in this scheme to the limits of integration.

5. We have previously mentioned that Stirling’s formula, 10(23), is
. most profitably used for integration over a double interval. This gives

Ta+h _ +1 B Ag A; ﬂg
_};_* JaYde = hL O dt = 2&[% + 8~ Tt o
(0
“2236;;0“']4-}32... (—n 1240
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This formula is simpler than that of Bessel, as it contains only prmclpa.l
values. The remainder term again has the form

(11) Ro = E™VICF (),

by application of the mean value theorem. Here C is the integral extended
over the corresponding term of Stirling’s formula.

The values (in the last column) for the energy of the spring in the pre-,
ceding seetion and for the distanee in 11.5 are caloulated by means of this
formula. The sum of the energy values caleulated in this wsy is in sa.‘t;g—
factory agreement with that caleulated by the Bessel formula.Jf “we
terminate Stirling’s integral formula with differences of the secomi order,

we obtain, starting from y, , K 4
23 4R A"; 1 s .\'.
_};“& fla) de = 2h(y1+'6‘) = 20 +§(yo _."%"l‘yz))
(12) .

3 \.
= '3*(‘9’0 +4!h+ o).

This is the so-called Kepler barrel rule, used by him in computing the
volume of & barrel. If we sum this fqr;trula for several double intervals,
we obtain Simpson’s rule (ef. 15.4): w8

== E’{% + 4y1+§yz -+ Ay 4+ 2y, ¢ - -]
(18) \

=g [4§ Yorsr + 2 E Yo — o + yg,.)].

Stirling’s integrsgl.formul& iz then an improved Bimpson’s rule.
(N

6. If we want to estimate the errors arising in integration, we first form
the corrg:}oﬁd'mg derivative of the funetion. From this we obtain the
maximunr value of the funetion in the given region and substitute this in
the; Aormula for the remainder term. This will give an upper limit to the
errpY, But in general these derivatives are difficult to caleulate. It 1=

\hcrefore customary to take the difference eorresponding to 10(5) as an
approximate value of the derivative, sinee Al.,. = A'F7{£), and to
substitute the maximum value of this, in the interval considered, in the
remainder term.

If we are dealing with a rational integral funection of nth degree, and if
we take the interpolation formulas up to the nth difference, all the formulas
derived sbove must give exact results, aside from some rounding off
errors, since the remainder term is zero,
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1f this is not the case, then the error can siill he made arbitrarily small
by a corresponding reduction of the argument interval, in the cass of
integration over a fixed interval from @ = %, to b = o + xh. The reason
for this is that the error term has the factor &A™ or A" for each syb-
interval. Therefore, if the maximum value of the other factors is denoted
by M, the error for the entire interval @ to b is smaller than M2* (b — q)
or ME™(b — a). Each of these becomes arbitrarily small with k if the
corresponding derivative is finite. N\

In order {0 compare, in a particular case, the error estimated by
mesns of this remainder term with the actual errér)which oceurs,
we form the difference scherme for 107 cos x which\is not reproduced
here. The integral of cos x dz is sin z + constant, so that the values
of the integral can easily be checked. Fromithe table it can imme-
diately be seen that there is no point in\gding beyond the 8th differ-
ence, sinee the error due to rounding o@ swould be considerable there
(cf. 10.5). D

Next, let us take the Bessel formuls for the entire interval from
0 to =, so that we first introddee*the intermediate values and take
80 as the meximum value af\A” from —36° to +216° provided we
stilt consider the fifth d.iﬁefg’ences in the calculation. Then

2097 [ w e\ _ 2497 . 2407 X 80r
B = 3623500 1r(15) ™) = 3508800 ™ = " soass00 O
The error t-hex;efb% remains less than 1/5 of a unit in the last place.
If we carry \ﬁt"the ealculation for any part of the interval, we find
in fact thé\exact value, just as we get exact values if we calculate
the valigs of the function for the individual intervals. That an
exact velue is obiained for the = interval is understandable because
qf‘j;h} symmetry.
O\ We now use Stirling’s formula and ealculate the value of the in-
N\ \tegral for the individual double intervals. If we use the differences up

\'f "% to the fourth, then the error of the sum of these integrals is

1

=T _-
Bz 2 1512
This is an error of about one in the last place. The error in fact is
fl.bo‘l.‘lt. one in the last place since the error of rounding off also enters
in. This error fluctuates, being sometimes positive and sometimes
negative.,

The error is considerably larger in the {wo formulas originally
derived from the interpolaticn series N_ . The values caleulated by
both formulas and the corresponding errors are reproduced in the

X 828 = (1.8,
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accompanying table. The numbers in italies are the values of the
integral for the single or double integral; the other numhers are the
values of the integral from zero on, which have been obtained by
addition.

TABLE II.
Newton for Newton for A\
P 107 sin = 1 interval Error 2 Intervals Error .
] 4000000 00030000 0 0000000 | L)
12 2070116 2079121 + 5 )
1988255 R
24 4087366 4087376 10 4067376 Y+ 5
1810486 K?,
36 5877852 5877862 - | +10 AN\
1358506 3844081
48 7431449 7431458 + 8 [\\Wi31452 +3
1228801 Ve \\d
60 8660253 2060250 4+ ©
550307 \9 2079113
72 9510565 9510566 |{ % 1 9510563 hl
34645 N
84 $945217 994621103 — 8
- a8 0484646
96 9045217 9045303 —14 9945211 -8
=, 434664
108 9510365 A 8510539 —26
N 850321 — 1284974
120 866025{'\ W RBG0218 —35 BOG023T —16
\ —I1228818
132 7431440 7431400 —49
< — 1558605 — 2782406
14¢ | (5877852 5877795 —59 5879831 —21
H — 1810497
15&"‘“ 4067366 4067208 —68
o\l —1988257 —8T98T 44
LT 2079116 2079041 ~175 2079087 —29
A —2079128
. 180 0000000 - 85 —85

An upper limit for the error may be given just as before. In this
caleulation, the sixth difference is still employed. Bince the maximum
value of A7 is abeut 200, the maximum error for the entire interval,
using single intervals with the Newton formula, iz

5257

R§r)(ﬁ"ﬁ}(200=190,

and using the Newton integration formula for double intervals,
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123

EX%O::IS&

R=xX

The errors then are within the maximum errors previously found, ss

was to be expected. The second of the last two formulas is eonsider-

ably easier to handle, and consequently the results are cbtained mors
rapidly. For this reason, sinee the errors to be expected are about
equel in the two cases, the second method is to be preferred to the
first. Tts only disadvantage is that the interva' between\yalues of
the function caleulated is twice as large as that betwet}n the given

argument values. e\

7. We can get approximate values for multiple.infégra.ls in the same
way as for single integralg, i.¢., by a multiple ingefgfafion of the interpola-
tion formula, For example, if the double infepral is denoted by J, and
the single integral by J, we have

N
(19) T =T+ Tolw — x)qx] [ 1@ az.

If the new variable £ is introduced} and the integration is performed over
a single interval, using the Nev{gﬁn formula ¥ . , we have

= = —_ 2 ':: ¢l : ; —
Ty = To + Toh +02 f f (t + y I)A‘_,-,, e’
&L o Yo

14

_ T e Y 1 1
{15) - Ju’ “K\fuk + hz Eﬂ + 6 Al;;g + '8' A:i_-l + ﬁ ﬁi;ﬂ
2T 8 . s, | s
AT R T 2 v T
'"\‘.
N\ 33953
O +as—3@o“m'“]+3»-

&

2\ After one value has been obtained with this formula, further ealeulations
\/ can be carried out more conveniently with the following formula, de-
veloped by Adams and Stormer.* If the sbove integration is performed

over the interval from 0 to —2, then

Joa=dy Jnh+h2[%*—-aﬁl_1/2_ﬂﬁil—%ﬂ\gs;z_;{%dis
(16)
_ 107 199 6031

10080 “-** ~ 34163 4% ~ Goyang Al ] + B
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If these two equations are added together, a formula is obtained from
which J, is absent and in which the two terms containing the double
integral remain:

= = = 1 1 19 3
=2, —-J.+ h’l:y., + B Al + 12 A+ EAES + I[-]A’_m
(7
863 ﬁiv.J B ~
+ 12096 A—ﬂ + 4032 A—?{? + Rﬂ + Rn - \

For practical ealeulation, it is better to write this formula in thge\’fbtﬁl

= — = * : W
j1 = 2Jy — J-l + hz o + "h_ [52—1 + As—a;a +- A'-}—'a '\"”Af—u;z + Aia

12
'\’\
1 1 145,
(18) +A17;s+""’5&:2_ﬁﬁ-b—am_‘m‘ -
N

7

61 - s
- T\ ] + R+ R..,\
Expressions are obiained for B, and &, which are completely analogous
to those obtained for single integralgy, ™

(19) R + B, = KA () + Bf™ @),

where —(n — 1) £ r 5 1{~n = 7% 0, and where 4 and B are double
integrals of the correspending polynomial of the interpolation series.
Formutas for doubﬁ\}htegrals, employing other interpolation formulas,
can be constructed 1b exactly the same way. If, for example, the Btirling
formula is first interrated from 0 to 1 and ther from 0 to —1, there results

'\ e

= & = A, AL A A
J\'—;\Jn+Joh+h2(%+%+%“ﬁ‘;_Z§%+"‘)"}'Rza;

(192}

~O=5 _5 473 e _ AL AL T8 A ) . .
\‘, J~1—J0+Jcnh+h(2 5+24+360 480 +R2n
By addition of these formulas, we obtain 2 formula due to Legendre:’

e o= = AT AL, B1A]  280Ad )
=2l —Ja+ h’(yu + —21"5_-!- 80480 3628800

(20) —
+ Rﬂn + Rﬂn -

The remainder term has the form
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Rou + R = 20 £%(0)

21
@1 .f‘f'f("“1’3(‘2‘2’)”'("“'(‘""’#

(2n)!

where ~n £ r £ +n. We omit construction of additional formulsas bere.
There is a series of such formulas, corresponding to the interpolation
formulas, the region of integration of which can be extended to s\irge
regior by summation. ¢\

7NN “
Example: If the formula derived from N_ for the,'sisgle interval is

applied to 107 cos , we obtain N
718 * # s
f _f 107 cos z dz = —107 -+ 218,424 = 9,781 476,
[+] 1] 2

which is also the exact value of — 107 'C@:'Jr/ 15, if the differences are
employed as far as the sixth. From th:e\re on, the formula of Adame
may well be used. This gives, for ag.xz}:mple, with four differences,

. 2,"__ Zr /18 T Z“'
— 10 cosls—j; j:;?,'gmxdz

) = 10,562,952 + 10,000,000 + 427,404

A = —9,135,458,

AN
while the ex c{;.vélue is 9,135,454, If six differences are used, the
exact valug g& gain obtained, These calculations should not be
carried ouf ‘any further, any more than in the estimations of the
errors; since they can contribute nothing new.

' "\.ﬁ"\" : NOTES
1. \Bashforth and Adsims, An Aftempt to Test the T 7 1 .
br.id'§i883). e feories of Copsliary Ackon (Gume
R 2.° Cf. note 2 in Art. 10,
7% 3. Lindow, Numerische [ wiinilesimalrechnung (Berlin and Bonn, 1928), p 3L

N/ 4. Stirmer, Archives des sciences phyat
) October, p. 63. Physiques et naturelles (Geneva, 1907), July W

5. Legendre, Traité des fonetions élliptigues IT (Paris, 1826), p. 52,

o

13.  Interpolation with Functions of Several Variables. Cubuture.
1, The interpplati?n with functions of several variables is extremely
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of two variables, the graphicsl representatwn, a6 is used in weather maps,
w the most clearly arranged. But even with this mode of representation,
the clarity ia greatly reduced with three variables, and for more than
three, & representation of this type iz worthless.

If data are to be prepared from observations, it is desirable, and fre-
fuently postible, 80 to arrange the obeservations that all the variables are
kept constant but one, and that this one is always changed by a constant
merement of jta argument. The magnitude of the increment for diffevent\
wrrien of observations is chosen as nearly the same as possible. We Jfhen
abtain, for two variables, the latlice poinis of & rectangular arra.y,\a& is

"N

mel Evped Emaa) [tped g

e Emapd =Py [Eres1re3)
mag) Eriznd Emand] Rz
| XS

IR e D
| ™
= e pe v “mand
Fy:;?éé’

shown in Fig. 33. We limit onrsplizeé here to this case, and to the case of
two variables. How such fqrmulsis will appear for more variables can be
weti frum the formulas t,l,eﬁved here. The function and difference symbols
will be the same as in‘the preceding articles, but the position of any
quantity must now be, characterized by two indices, ss is shown for the
valuen of the function in Fig. 33.

X \ )

2. First wc\construct 8 difference schema for the funetion of two variables,
roreen ncfmg to the difference scheme of 9.1, Here we use the symbol
(RETE divided differences, to be distinguished from A, which is used
{orwanlinary differences for equidistant values. We then form the divided
#Aflerence in the direction of both variables, # and y, and choose the two

e \«iperscripts so that the first index gives the order of the divided difference
for ¥, the second gives the order for y, while the subscript, as has been
mentioned above, denotes the position in the difference scheme. It there-
fore reveals the values from which the dlﬁerences are formed. The first

Sdferences become
" Zmx — Zni1.n,

iy m o i +172
LA
) et Ty — Eims1 ' Un = Yanr

Zoon ™ Zmanwl



132 PRACTICAL ANALYSIS

From these two first differences we can form the three second differences:

1e 0
20 — Ymars2.e T 5'.;4-3/2.13 —— Zmuon
m+lm - T ™ Lz (SL‘.., - xm-l-l)(zm - xnﬂ)
Zmil.m zu+3.n

+ (Tmss — xm.){an-l - szﬂ) + (zmu - 9:“)(3;1-: - z",.\”)’

10 10 a1 . g01 A o
511. 61»1—1/2.!! —_ 6m+1/2‘n+] — 3m.n+1/s 6u+1,n+ln '\“\
mFIfE = = — ) .
m+ 142, nF1/ y‘ — y,“‘l Ty Tmes : \
N’
N
7%
4 A
Zp.n ) P i .n’

Zw = T ) (Fn = Yar1) + (1 —‘\xhu)(y)l = Ynt1)
&) \%

Zmontt > Zmat.ntl
NRCRE . T— ‘Q@M ey
502 . = 53|lm+:{2 - 53&-&3/2 __~ Zemon

Yo — Ynuz ’s.’:‘:- (y’,. - ?!.m)(yu - y,.+s)

Zaart Zo,nez

+ (yrn-i _.ym)(yn+l _ yn-r:!) + (yu+z - yn)(yn+s - yuﬂ).

From the latter expressidns, it follows that the order of the terms, in
which the values of ﬁxe functions appear in the differences, is arbitrary.
This theorem canbe proved, in general, in a way similar to the corre-
sponding theoterd.for one variable {8.2). We also write down the formulas
for the diffeettees of third order:

\Y
N/ 20 0
'a& - — 5m+1.u - 5m+2.n
& +3 T = . 7
".;.’ . T Tta
.00\.0
A\ "4 511 511 30 20
3 521 = SBXL2aerlst T Omadss,meise 6m+l.n T Omsined
w4l mti/E = = H
T = Xopug ¥a — Una1

@)

1 1 z 02
2 . Smarsgnsrsm — Bur1/% niasn Bk a1 — Bt t.ast
m4 172,01 = =

Yo = Ynis T — Tumar

goz sz

& = —mentl T Oy pa

LLIE LS T4 = '—";____————’ ete,
Yo ™ Yoss
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If these divieed differences are formed, we obtain the following scheme: '

0 1 1 3 2
2 2
01 0 01 03 02 04
0 £ docrm (z0i] o1 dosrey  Botam [Zoz] B0z oz A
l EID 511 510 12 611 13 10 N
2 (14230 [1/2) {10} (A2 V1/20| Ui say0a02) 6(1;2) (8/2) (152)2 :’\“\
7NN ¢
L 3 AT
Y] 2 138 03 S g02 04
1 f210] Sioym 7] o1 Sirzy  Srarm [afal™ b1z 12
2p 21 N 22 2 3p 2z
bin U123 b 8 81 c3m " S b2 b2
10 611 10 612 611 5‘!3 610 8 12
3 3/m0 w/arsn |OasmaGase|Gose s ({21_:5;2) sn20asne
7 |5 5 5 P in> a0
tassn /2 (e |9 372 (s/{ & /22
.
01 02 01 \Y o8 07 I
{220 dz1sm fen] 821 Saavay  Sresrm [722] 822 B2s
TW
20 21 it} 22 w2 ¥ [H] kov ]
2 By Sa(1/m a1 8 o\ d23r2) 0oz du
o 10 N 40
fz0 a1 RN gy
10 11 A0 12 11 1% 10 iz
5 dismo | demarn s durm|dem amdemam| Semadicme
= £13
B0 T 7 N\).c50 1 a0
2 Ssmo Scerm (k@\ Bissan 52:5/2) (3/2) Sierme
R
02N\, b3 01 5 02 04
[20] 5{mz> [£:.] 61 bz 52(3;2) [s2] 852 sz
20 { o1 20 2 21 20 22
3 | s 8 B [dacem gz o
Ny 10 an
ﬁ\ 4 L 3z
\

2 S

wheteithe divided differences are given as far as the fourth. It can alse
‘be'sown that these partial divided differences are the mesn values of the

\coi'responding peartial derivatives over the interval in question, so that
the general interpelstion formuls derived in the next section goes over
into the Taylor expansion for several variables, if the coordinates of the
funetion values are allowed to converge to & point, provided that the
derivatives concerned exist and are continuous.

3. By use of the differences appearing in the scheme, a general inter-
polation formula can be constructed as an identity, just as in 8.3. This is
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134
Bl — o) = A=l g g Bed =l
@) o '
= 8emsT — 2o) + Sotpm (Y — th).

For the differenees oceurring here, we have

610 . — a]ﬂ w\
z) + 2ame = Bimfy )

10 10
Sieyziy — Grrsene (x —

ey — Biime =
tr/Dy i/ p——— ¥ — 2
)
A\,
(5) = Fornsonl® — 1) + 8 m W - o)
i — 83 OO
01 + L} {1 D N
Bourny — 53?1{21 = act y— )= 5@({,;,-}'1);4)(‘!} — ¥
) ¥— & O\
N7
These ditferences can be further transformed. They become
PN
20 520 Bternirny — b1 4 1w — & -
5. — = _(u__% v — L SR 2 L AP
ze13/830 1o z— 3l) t-fc 32)‘_" ¥ — ¥ —

L >

® = af?nsyg’gé@ — ) + Sumly — w),

&N
11 il 2R
Sovmarn — Stmasm = Q[{fﬁ)(wnu(y — )
2 o2 03
Barurnyzs — b m*%‘ Soive 038 — Y2),
i ¢
from which we havb\\“" :

30 N 8Cers) — & I
Ficsrnrmng & Fisrmo = etomy @R (p Ta)
)" TR T
I
"\ an 30
\“; + 5(3/2!9 i 5(3 )8
N _ T T By — )
XY ¥ o
™ - .
"\‘,’;" <0 31
’"\ivi = dirnnandr — z) + Sisrzy oy — ¥o),
\,_ 21 21 a2
Bitumy ™ Bitism = $turisely — ),

1z - mi2 18
812 persia Ot = 6(1,2”“5,,8@ — ¥},

03 ] o g4
Socyesirm Boiase) = Soqur1ry 18y — ¥s) ete.

If th? values obts,ine_d above are substituted suceessively in the first
equation, the general interpolation formula. is obtained. We write it here
for the interpolation of third order with the remainder term:
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o] = o) + 82male ~ 20 + 5oy — ) + e — 2z — 22
+ Sdmam® — sy — ¥o) + iy — y)ly — )
®  + Bmole — m)E — 2)e — 2 + Hhwlz — 2 ~ 1)y — 30
+ 3mle — 2y — 1 — v ~
+ Sotn® — vy — vy — v) + Ri, O\

where 7'\

\

B = 0uinnos = (e — o) — m)e ~ @
+ fimumle ~ 2@ = ) — 2N %
% + 8Grnnlz — w)e — ) 2 @)’(y — )
+ Sumusnnlz — Ty —‘vcj)}y“— ¥y — %)

+ Sotvrinsly — yn)(?"" ¥y — ¥y — y)-

We limit ourselves to these terms, 8inee only the first terms are ordinarily
important, and since the construction of the formula from the terms
already written out follows,without difficulty. The remainder term ean
be transformed by use of \{he mean values of the partial derivatives of
corresponding order, agwas dore in 8(25). Furthermeore, it is now evideni
how the formula will constructed for more than two variables. We
also orit this ger;gré}ization.
\¥
4, Ea;m(:eple: Atgler’ gives the energy consumption of a person in
lifting“various weights from an initial level (e.g., ¢ m.} to different
heights” The energy eonsumption in gram calories per kilogram meter
o’g'.: work done is given in the following table:

o O Weight Jifted _

\ Y in kg. 9.15 13.85 18.95 24.05 29.56
Height in cm.

50 78.78 57.55 - 47.92 42.64 42.87

00 59.30 47.25 40.99 30,26 42.10

150 48.31 30.02 36.07 36.87 39.68

200 44.47 37.26 34.03 36.56 40.69

If the difference scheme is constructed for these values, starting
from one corner, and the interpolation formula is set up, we obtain:
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y = 76.78 — 0.3406(z — 50) ~ 4.092(y — 9.15)
+ 0.001298(z — 50)(z — 100)
+ 0.03055(z — 50)(y — 9.15)
+ 0.2249(y — 9.15)(y ~ 13.85)
+ 0.000000880(z — 50)(z — 100){z — 150)
— 0.0001881(z — 50)(z — 100)(y — 9.15) .\2\
— 0.001770( — 50)(y — 9.18)(y — 13.85) O
~ 0.00948(y — 9.18)(y — 13.88)(y — 18.95)& ..
If the individual funetion values are calculsted"b} .\mcam of this
formula, the following errors are obtained Thege gfrors become too

large for the extreme values, so that the formula can hardly be used
beyond the values used for its construetionz */

¢m 9.15 kg 13.85 kg 18.96 kg’ 24.05 kg l 7888 kg
50 0 0 o) <0 Y
160 0 0 » ML — 45 ~i94
150 o 0 A8 - a9 -18.1 -420
200 0 -3 ~15.3 ~40.3 -T91

- H & really nseful repreSeptation is desired, then it is advisable to
start out from a val@eéylying in the middle of the table. It ia only
necessary to rearrange the table so that thia latter value is in one
eorner; for example,” we could select the following arrangement;

cm 1805 kg 24.05 kg 13.85 kg 915 kg 2556 kg
100 P00 30.26 47.25 59.30 4210
A N ssa07 30.87 39.02 48.31 wen
N 47.92 42.64 57.55 76.78 2.
R\ 34.03 36.58 37.26 447 40 09

&

\ \ if the difference scheme is construeted for this arrangement (which
N/ corresponds somewhat to the series of the Gauss formula), the fol-
lowing interpolation formuls iz obtained:

y = 40.99 — 0.0984(x — 100) — 0.3392(y — 18.95)
+ 6.000402(z — 100)(z — 150)
+ 0.009922(z — 100}y — 18.95)
+ 0.0871(y — 18.95)(y — 24.05)
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y = 76.78 — 0.3496(x — 50) — 4.092(y — 9.15)
+ 0.001298(z — 50)(z — 100)
+ 0.03055(x — 50)(y — 9.15)
+ 0.2249(y — 9.15)(y — 13.85)
+ 0.000000880(z — 50){(x — 100)(z ~ 150)
— 0.0001881(z — 50)(z — 100)(y — 9.15)
= 0.001770(z ~ 50)(y — 9.15)(y — 13.85){
— 0.00948(y — 9.15)(y — 13.85)(y — ”1~§.95) + e

If the individual function values are calculdbed by means of this
formula, the following errors are obtained {“These errors become o0
large for the extreme values, so that theormila can hardly be uged
beyorrd the values used for its constru&tién:

o 9.15 kg 13,55 kg JCIS95 ke | 2405kg | 2800k
50 o 0o o 0 —- 11
100 0 oy 0 45 -194
150 [ AL ~ 4.9 —18.1 —424
200 o X —15.3 —403 ~79.1

If a really useful ,erresent-a.tion is desired, then it is advissble to
start out from a%alue lying in the middle of the table. It is only
necessary to rearrange the table so that this Iatfer value is in one
corner; for gxample, we could select the following arrangement:

em MEI895 kg ' 24,05 kg 13.85 kg J 9.15 kg ‘ 23.56 kg
1004, 40.99 30.26 47.25 59.30 42,10
x.?u 36.07 36.97 39.02 48.31 30.68
50 47,92 42.64 57.58 76.78 42.87
200 3293 | 26.58 3726 [ 4447 40.69

If the difference seheme is construeted for this arrangement (which
corresponds somewhat to the series of the Gauss formula), the fol-
lowing interpolation formuyls is obtained:

Y = 40.99 — 0.0984(z ~ 100) — 0.3302(y — 18.95)
-+ 0.000402(z — 100)(z — 150)
+ 0.009922(z — 100)(y — 18.95)
+ 0.0871(y ~ 18.95)(y — 24.05)
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-+ 0.00000236(x — 100)(zx — 150)(x — 50)

— 0.00004(x — 100)(z — 150)(y — 18.95)

— 0.000299(x ~— 100){y — 18.95)(y — 24.05)

— 0.003316(y — 18.95)(y — 24.05)(y — 13.85) «--

In this case, considerably smaller errors are obtained:

N\
cm | O16kg | 1385k | 1595k | 2005ks | 2850ke
7 ’N
50 ~1.55 +2.00 0 0 2,85
100 0 0 0 0 a0
150 —0.97 0 0 0 AN-118
200 —3.36 ~3.75 0 106840 ) —112

These are errors which barely exceed the limits of accuracy of the
measurements. The difference between the {wovormulas is caused
by the fact that the factors with which the\divided differences are
to be multiplied increase very rapidly in-the first arrangement. This
behavior is similar to that of the corresponﬂmg interpolation formulas
for one variable.

),’

o X

5. The caleulations are simplifiéds if tables are available with equi-
distant function values. If the differénce between the individual values of
£is k, and that between thesales of y is &, then, if the function values
are arranged in order of mcre\sing argument, we have

-Tlxxo"i*h h =4 +k

,\ z,,_x0+2h ¥ = o + 2K,
Ii the ordma,ry\ﬁﬁerences A are introduced in place of the divided differ-

ences &, wke;‘e

(10) Aurz)u = Zig — Zon 4 Agh/z} = Zm — Zoo ete.,

the Eeneral interpolstion formula (8) goes over into a formula which
\corresponds to the special Newton interpolation formula N,

N(ﬂ, 7") = Zao + Al(?;zmu =+ Aﬁ}m) v+ .ﬁ (Afﬂu(u - 1)
+ 2A1(11/s}c1;s}u‘”

v 8850(0 ~ 1) ++ o (Amoulu ~ D = 2)
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+ 3aTumule — 1w
+ 3Aif;2}ﬂw(” -~ 1} + Ag:t!s,fz)”(” — Dz — 2)) T +R-l)
in whieh ¥ and » have been introduced as new variables,

_ T M
u =", v =

N\
Corresponding to the formulas ¥, and N in 10{11) and 10(13), four
different formulas can be formed here according to the position of the
differences used. For the reasons given above, these forfiiulas are not
suitable for the representation of observations, and ‘fer\'interpola.t.ion,
because differences are used which lie entirely on oné\side of the initial
vahie of the function. It is always advisable to qgi{diﬁerences which are
formed from values some of which lie on either side of the function value.

This is the case with the Gauss formulas for fuhétions of one variable.
While in the previous treatment (Art. 10)there were only two possible
Gauss formulas with the same function valué€, there are four here, just as
with Newton’s formula. More generallyy’with functions of n variables,
there are 2n different Gauss Sformulgs. The first terms of the first formula
for functions of two variables are N )

N 1
Z =z + Al ot + Agtiya? -+ 3i (Al — 1) 4 244 2 /2ty

+ Adw(e _,‘{ID’
,\\..
1 Ase 2 21 2
(12) + '3_!'(‘%&1!2)014(“ - D+ 3A5mufe — Do + 3AL g0l — 1)
"/
AN e (” — 1)
A& .
.(§" + a1 (Asou(u’ -~ Diu — 2) + 463:/21(1;211%&(1.&2 — 1w

&

& o + 6as5uly — Do — 1)

N\ + 480 e — 1) + A — Ly — 2)) + -+ + B

:I‘he other formulas are constructed in a similar way. If the mean value
ig formed fmfn these four formulas, a formula is obtained which corre-
sponds to Skirling’s formula. This formula is especially useful for inter-
polatl?n in the vieinity of a point, because the vahzes of the produets are
small in comparison to the differences. For the construction of the mean
value formula, we observe the following. Sums of the four differences
appear, and the following abbreviating symbols are used:
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11 1t 11 . 11 Wil ’
Anxs:un) + Alpmuam + Ac:/s)—u/z) + Alusmyenm = Ang 1

(13)

31 31 P 21 _
Atymam + Alumoam + Alm-ase + Alum-am = B

etc., where, for example, Ay is the corresponding difference for the double
mesh interval. If this is kept in mind, we obtain the following forraula:
N
S(ﬂ, 9) = Zyn
10 0 o 01 —_— 2N
_{_Au.%wmu + M‘WQ + -%[(Aﬁ.?u’+ 24%hus . & \J |
30 30 21 f e \ gt
T A% + %[ﬁ{ux)u —2 At1mn uld — 1) + 3 _ﬁ_qu@_i;’_%g':i@:uz"

+3 Algipm ‘; Alurse il -+ ﬁg?q_z; '2 A 1o y(ﬂz."'_’ﬁ)tl

+ ﬁ (B0 — 1) + 480w’ — 1) + 6 ﬁg:‘tfﬂi.\\':
+ 480" — 1) + AG — 1)] +:.;Is\
+ —51—] [Ei;:-’_ﬂi.o"'z_“%ﬂ i — 1)(?3 '_»_{;1{;'_ 5 Altum ~Ié Al n W — 1w
A%+ A% N
2

~
3
<

_‘ 1)92 + 10 Aﬁlgz; '; Ao g1y u’b(v“ -1}

+ 10 ® plut

(14) + 5 Qt:nm -; 51—‘(1!“!;’\';93(9: — 1) + Ag?]./ﬁ) _; Ags-flf‘z} y(vz _ 1)(02 ___4):|

+ g1 ARG —H0® — ) + 6ANu" — 1 —

+ 15a3ﬁ’}u’:(u’ — 1) + 2083%ul’ — Lo’ — 1)
:t\“. 15 L] L]
+;l’§p§ﬁu’v’(v’ — 1) + 8Akw® — D' — 4)
(R~ DO~ O+ F Ba

TN,
S

N

O

\ 6. Finally, the Bessel formula can also be written out. We start from
the four formulas which are construected corresponding to the four Ganss
formulas above, only that we begin from four different values of the
function. These are the values whieh lie in the corners of a rectangle. We
then use only differences on the sides or in the interior of this rectangle.
If the mean of these four values is taken and is written as above,

(18) Ao + Ay + A+ A = HBamarm
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ete., we obtain the generalized Bessel formula:

Blum=zi/5am
A}?!2)1+A}?12J0( 1) , A?}uz:—f-:ﬁg}:;m/ __1)
+ 2 \¥—3/7 2 (I

N 1 1Y, =
-f-% Ao amu(e— D424, nm(?-&—“2‘)(9—-5)-}-.’&??,,“,,”1{9— 1]}

1| AY,,,,}aY 1 Aﬂuz:‘l‘ﬁzhm » 1
1| Agsen asme 1 =14/2 T a0, 2
+3! ——"hug {u—1) % 3 +3 ) K z;}«l) s

(16) . +3A}:1¥/$)l';_ﬁ§12!?!0 (?)—'l)(u.—‘%)-l'ﬂ??”ﬂ ;sﬁﬂ?:::;sn (ﬂ‘—l)(ﬂ—%)}

7

/N

>
Ll an \ 1 1
+E|:A??’2’ “’”u(ug'_1)(u-2)+4A3r11;2)rxfzﬂku—'-l)(“_ﬁ)( _5)

S22 ’ .’\\1: 1 1
+64a /) (i —plo— I)ZP\‘iAn/z:(1/2)(u—§)¢)(v—l)(ﬂ—§
+‘Q‘T(‘l*/s) e’ — 1)@?-—-'233'- TR,

5till other formulas eould be der}}éd, but these three will suffice. These
formulas have remainder term:s;’ which can be expressed by mean values
of the pariial derivatives. ATh the considerations with regard to length
of interval, remainder tefmg, ete., which we had diseussed for the inter-
polation series of func,tig% of one variable, can be repeated here.

. \ v

7. BzamplgNIn the Eleckirotechniker-Kalender the sag of a 35 mm®
copper Wzrg 18 given in centimeters as & function of the length in
meters dnd the temperature in degrees centigrade. The data are
reprg@. d in the following table;

8§

O\ ] 0] 60 [ 80 | 100 120 [ 140 ] 160 | 180 (200 30 | 30

AN m m m m m m m m m m m
eN®

AN —20° B a2 | 20§ 63 | 116 | 207 | 310 | 434 577 | 744 | 910 | 1059

\/ —10% 1 14 1 33 | 711128202 320 [ 453 | 502 | 760 | 926 | 1095

{the 16 | 38 82 ) 142 | 240 | 345 | 460 | 609 | 775 | 940 | 1105
0% {20 | 45 | 93 (7155 | 252 | 360 | 236 | 624 790 | 956 | 1120
+20° [ 24 | 53 | 106 | 169 | 266 | 374 | 500 | 640 | 800 | 470 | 1135

+80° | 20 | 62 | 118 [ 185 | 282 | 38 514 | 659 | 815 | 085 | 1150
+40° | 37 | 70 | 130 | 195 202 [ 403 | 530 | 675 | 827 | 1000 | 1165

If we use the underscored values, the following difference scheme
may be construeted:
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If the generaiized Bessel interpolation formula iz applied, the fol-
lowing representation is obtained:

1

z =390 + 29(u - %) + 329(» _ 5) — 0.625u(x — 1)

+ 4(1:. — é)(v — %) -+ 83.75(v — 1)

+ 0.0833u(.u —_1)(1;, - %) — 1.2 ~ 1)(0 _’%}“\

— 5(1:: — %)v(u — 1) — 8.66Te(p — 1)(,,. _‘

l») \
247

N\

. and if the individual values of the function @r{éﬁlculated with this

formula, the deviations obtained from the

table are:

~

umbers in the original

a\/
40 m 60 m so;{’;‘ 100m | 120m | 140m
S 3
v -1 -2/3 | NY/3 0 1/8 2/3
——
W <N 3
—26° | ~1 =925 | —1529 | 1132 | —1.25 | —6.01 [ —1.54
—10° [ —1/2 | —s.2 .—”1}).’?8 — 793§ 4044 | —5F8 | —392
a*| o —250 [“S7693 | — 7.46 o —8.40 { —385
16° /2] —031\ — 475 | — 6.8 | +0.50 —5.66 | —325
20°0 1 4240, — 815 | — 8.m 0 —5.04 | 207
30° 3/2 500 | — 208 | — 7.0 —2.44 -6.57 | —1.24
9071 2 %550 | 4 054 | ~ 748 | 125 | 18 | —1m1
\ .\" 160 m 180 m 200 m 226 m 240 m
K N 1 4/2 5/3 2 7/3
\" 1 .
. ‘;}0 —1 +1325 | 4243 | ~495 | + 225 | 43804
oo T10% =12 1 050 | 4476 | —408 | + 205 +16.26
) 0°| o 0 +412 | -840 {4 250 | 41890
10°0 1/21 ~119 | 4460 | -392 | — gay +15.02
20°; 1 0 +324 | —0092 | — 250 | 4 968
50°1 3/2) 40638 | —1.90 | —274 | — g83 + 2.84
40°| 2 —1.25 | —474 | —810 | —1225 | — 513
Of course, a representation could have been chosen by means of
the Stirling formula, starting with a length of 140 m. and a temperatire
of 10° C.

8. Approximate values for the partial derivatives and for the integral
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gan be formed for differentialion as well as for integration, under the same
assumptions as in the case of the interpelation formulas for one variable.
This is & straighiforward operation. The approximate values of the partial
derivatives for the argument values x, ¥ for which the values of the function
are given, can be computed from Stirling’s formula. The values for the
poinis in the interior of the individual rectangles ean be obtained from
Bessel’s formula,

Here we shall write out the formulas for the integrals which use only,
the last two interpolation forrulas. First we shall obtain sn approximadté
value from the Bessel formula for the integral over the rectangular rggiQn
the sides of which have the magnitude of the argument interval. ™

Jo j:.u. Lt.+k flr, yydudy = -k ful J: B, ) d’f{@ﬁ);“’”

7

L ¢

,\

) 1
ﬂc("‘i‘mtus]("g))
\/

- 1 1
'k[zmsuum + 31 (Aﬁmnm(—“g) +
A
S —_— N——
1 11 |, 1 e { 11
{17 + E (Aﬁmn/z) % + E Afzrz)u/z; 'i' Ad:trz) (1/2) ‘gﬁ)

"

V(e 191\, e 11
+ Ei-l (A??m)um)(—ﬁﬁ‘) ’i‘}lﬁdn?z'a:(us)(”_l—z)

i NSV 191
+ Aﬁ/zuus)(—f%():é A?g;mum(”—‘sj)) - :I 4+ Eie .

Like the ordinary Bessel integration formula, this formula uses only

mean values, i.e., t@e thean values which are formed from the_fo_ur x_falues

of the functjon,é&ing at the corners of the rectangle. The similsrity fo
€

=

the ordinary, Bessel formula becomes more noticeahble if we write
AN 1
J =& Zumam — '1_2(532?;2)(1/21 + Acgmmm)

N>y
N

Q

(18)

5 . S
+ :f’l2i0 (A??zz) am + 11 A mam + ﬁ?f;mmz:)

)|
60480

Lk}
+ A:uzmm) st :l

A% + KA ag + Al ni'm)
(1423 (1/2) 191 \Fanmasm [iv;
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Such formulas can be constructed for a series of adjacent rectangles by
use of the corresponding differences, and the results can be summed.

9. If we start with Stirling's formula and integrate over the double
interval agin 12.5, we obtain

f,::h fv_:k T, y)dedy = h-k _/:I ‘/:l Su, v) du dy

¥

= h-k[4zoe + % - %(Aﬁﬁ 85D
! '\
l 40 ‘2) 22 9 04(.&58:)1)
+ 41 (Auo(_l5 + Aaa 3 + Auo '\’15
(19) O
(040 8, u . oe@)
+EE(AOO.§T_3(A°°_E—:S®)+6M21 + +R

= 4ht] 2o + 3 (AR A% — g (8% — 5A% + A3

"
" X

+ 1—511—2 (a“*g (a5 -+ Ax) + A.?S) x ] + Ben

Just as in the formulador one variable, only valies of the funetion and
differences appear hexe }r}.uch are already in the difference scheme. The
remainder terms edn'bé formed and estimated as was done in Art. 12 for
one variable. A different region of integration, for example a circle, could
also have beenvehosen, but this will not be considered here.

If the Stirling formula is terminated after the second term, a formula
correspogiﬁﬁg"'to that of Kepler [12(12)] is obtained for the cubature:

(20}"\'\\“ y = 2?},-5&:- 2o + 20 + zo-—f‘: + 250 + 2200.

~'\This is alse known as Woolley's formula.® The error in this formula is of
Tourth order and can be obtained from the Stirling formula. By summing
over the various rectangles, a formula may be obtained which corresponds
to Simpson’s rule, but in which double sums appear. This form can be
usedl for finding the approximate volume of bodies of arbitrary shape.

The formulas of the last sections may also be extended to funetions

of more than two varigbles, In this way we can obtain a remarkably
simple formula for the approXimation of a volume integral, which corre-
sponds to Kepler’s barrel rule:
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{21:] y = 2.2k 2 Z_ypo =+ 210 + Zo—s0 + Zown + Zap—1 - Zom
8 .

There appear in this formula only those values of the function which are
loeated in the middle of the bounding surfaces of the body. The error
here is also of the fourth order and can be estimated by the gencralized
formula, (19). '

Construction of other formulas, such as formulas for multiple integra-
tion, are omitted here. \\

NOTES \{\
1. Atsler, Neuturuwissenschaften (1924), p. 1043, 4 Q
9. Lambert, Beitrage, Teil ITI (Berlin, 1772); Lagrange, Nous. Mém. ds{e}{iﬂ (1772).
3. Woolley, Mechanics’ Magazine (1851), p. 262, 2\ 4
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CHAPTER THREE

APPROXIMATE INTEGRATION AND
DIFFERENTIATION

14. Graphical Methods,

1. Approximation methods are used for integration in afl c4ses in which
the functional relation between two variables is not givendn the form of
an analytical function, but as correlated numerical valuegor by a eurve.
Sueh methods are also employed when an integrationds performed on new
functions, not previously tabulated. We have already mentioned (in the
preceding chapter) approximation methods wh‘i‘c} follow directly from
the interpolation series. Here, graphical and wiechanical, as well as the
so-called mean value methods will be disph@eéd. First, we shall consider
graphical methods. We therefore assumedthat the funetion is given in the
form of & curve drawn, perhaps, on réctangular coordinate paper. If we
should integrate this curve, it would\iean that for the given curve y =
J(@) we would find another curvelY" = F(z), the “Integral curve. The
ordinates of the curve are a messure of the magnitude of the area which
is included between the givemeurve and the x axis, We consider a rectangle,
one side of which is a giyven length b, the “integratien base”, and the
other is the difference Between two ordinates of the integral eurve which
correspond to the g{{mﬁsas a and ¢ Then the area of this rectangle,

Q"

0 SO 8 - Yo = [ ae,

Fia. 34

should be equal to the ares of the surface which is bounded by the given
eurve, the z axis, and the y-parallels through # = q and z = & (Both

146
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regions are shaded in Fig. 34.) Since this construction determines only
the difference of any ordinates of the integral curve, there are an infinite
number of integral curves, all of which may be obtained by the displace-
ment of one such curve in the ¥ direction. 1%t is therefore sufficient to
conetruet one of these curves, e.g., the one going through the origin.
If the integral curve should pass through a given point, the construction
iz begun at this point and extended in both directions.

™\
2. I, in Fig. 34, we integrate not to the point £, but to & neighboring
point £ 4+ h, we get the relation K \\
: tan O
@ WYE+R - Ya) = [ J@de. N\
If the relation given in (1} is subtracted from this equﬂtlen, we have,
for a'continuous curve,
f+h ‘.\\: -
® ¥+ - YQ) = [ S de
¥ designating a mean ordinale. Therefore, we heve
Y+ B) ~ Y(E) =¥
@ -7
If & is allowed to approach zerg; then
2\Y
£ ,
(5) LA oy = %,
y=f(x)
Wﬂ'ﬂn dx
[-e=2
f

1. 35 Iia. 36

L.e., af the points at which the given curve is continuous, it ¢s the derivative
curve of the desired infegral curve. The hypotenuse of a triangle, the legs
of which are the ordinates of the given curve and the integration base,
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has the direetion of the tangent of the integral curve at the same vale
of . At the point where the given curve has a discontinuity, the intepral
curve fails to have a tangent (Fig. 35). :

3. The integration curve for a straight line parallel to the z axis can
easily be constructed. Tn Fig, 36, the integration base b = OP is drawn
from the origin along the negative x axiz, and the point @, in which the
straight line ab to be integrated cuts the y axis, is connected tohe “in-
tegration pele”, P. Then the direction line Pa is obtained. T ]:}i&\:ketcrminm
the direction of the integral curve. To make the integ:@l\fmrve pass
through the origin, we draw a line parallel to Pa passing through the
origin. N

In the same way, the integral curve OBDF ecad zéasily be construeied
from the step funciion abedefy - - - in Fig. 36. The‘ﬁ)tegral curve is formed
from straight lines the slopes of which are determined by the height of
the respective steps. It is best to project.these ordinates on the ¥ axy
by means of lines parallel te the x axis. B% connecting these points with
the integration pole P, the pencil of\irection lines (shown in Fig. 36) is
obtained. A polygon is then drawn fromn the origin, corresponding to the
individual rays of the peneil. Eadhiside of this polygon is parallel to the
direction line of the pencil 'bplbn'ging to the corresponding segment of
the original function. N

The conetruction of the pencil of direction lines ecan be avoided if
auzibiory devices, suchdas the integration triangle of Thaer’ or the inte-
grator of Naatz and,\ Blochmann® are used.

F1z.38

4, If_t-he integral curve is to be drawn for an arbitrary curve @, ¢, ¢
g, & (Fig. 37), the original curve js replaced by z step function with an
equa'al arca under the curve. The substitute integral curve, consisting of
straight line segments, is drawn for this step function. This gives an
approximation for the path of the true integral curve. The substitution of
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the given eurve can be carried out either by use of mean ordinates (Fig.
37} or by mean abscissas (Fig. 38). The integration region is divided into
strips paraliel to the y axis, drawn at appropriate intervals, In curves of
slight eurvature, the strips may be wide, being narrower for steeper curves.
Also, boundary lines of such strips are always drawn through all maxima
and minima of the curve. In the first case, the nearly trapezoidal figures
aa’d’e, cic, with the z axis as one base, and & portion of the curve as
the other, are replaced by the rectangles ba'd'd, ete. Then the curves
segment ace is replaced by an z-parallel bd, so that the triangles abe and
cde, bounded by the z-parallel, the curve itself, and the y-parallels bcu,md-
ing the strip, have equal areas. In general, this is done by estlmatmn
(cf. Bec. 6).

The step function has then the same area as the given cufie hp to the
boundary of the strip. But the ordinates here are differeit{Therefore the
substitute integral curve and the desired integral-¢irye will have the
same ordinates at these limits, but not the same giope. The substitute
mtegral curve is an inscribed polygon of the desniad curve. This method
is to be recommended for a case in which only*tkhtz total area is desired.

5. On the other hand, if it is a questwn wof the construction of the in-
tegral curve along the entire path, thert the method of mean abscissas
is to be preferred. Parallels to the XYaxis are drawn through the inter-
section of the y-parallels bounding the strips and the curve. Another
y-parallel is drawn in between each pair of these y-parallels, so that the
small triangles abe and cdg, \brmg on either side, are of cqual arca. The
same procedure is repe{é}I d.for the next interval, giving triangles efg and
ghk: of equal area, ete e abscissas of these y-parallels are known as
the mean absecissas, Two steps then occur in each strip. The initial step
has the same ofdifidie as the final step of the preceding interval, while
the second st,ep;hé,s the same ordinate as the initial step of the next in-
terval. Ju this“case the given ewrve and the step function have equal
areas at % ‘boundaries of each strip, and equal ordinates as well, There-
fore the substitute integral curve and the desired integral curve have
the S&me ordinate and the same slope at these points. The substitute
Jn‘ocgral eurve is then a succession of tangents of the desired curve, in
which the contact points of the indjvidual tangents oceur at the boundaries
of the strips, and are therefore known. In such a succession of tangents
with given points of contact, a curve can be drawn with greater aceuracy
than is possible with the inseribed polygon discussed previously. There-

.fore this second method should generally be tried first.

If an ares which iz bounded by curves shove and helow is to be de-
termined, then the upper and lower curves arc both replaced by step
functions. The slope of the substitute integral curve in a given inferval
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ig determined by the difference of ordinates of the upper and lower step
curves in this interval (cf. the construetion of the first integral curve in

Fig. 47).

6. The beginner frequently makes the mistake of choosing the sirip
widths too small. This is not to be recommended, becanse inaceuracies
can arise when a great number of points of conneetion oceur in the seties
of straight line segments of the substitute curve. With a little(Psctics,
the substitution of the given curve with a step curve, even jwith' greater
strip widths, ean be carried out with great accuracy. Ii ghe/drawing is
made on rectangular coordinate paper, a check can be nfade on the equal
magnitudes of the triangles of a strip by counting the number of squares

Iying in each triangle. \
The following constfuetion gives good results

D
N in many eases. Its\aceuracy corresponds roughly
E I o that of Simpson’s rule, and it always is usaful
. - if the portion 6f'the curve lying in a given strip
" can be replaeed, with sufficiently good approxi-
H mation, by 4 parabola or 2 cubic.

I the.origin of the coordinate system is
A~ "hT 0 h B shifted to the middle of a strip, and the width
Fia. 39 ofvthe strip is designated by 24, then

~

(6) A ='g + bz + ea® 4 da’,
if a cubic is used ag & curve. The area of the region ACFDB is then

X\

+h
) J=fhydm=2ah+§ch“.
The ares, {f‘ thie chord trapezoid ACDB is
OY 8 = hy(—h) + g(+1) = h32a + 247,

(8} A\
ar;{i’hae area of the tangent trapezoid AHIB is
RS )] © T = 2h-a.
\ )| . :
From this we see that

(10) J = 2£3i'_3_a

’;‘he distance EF between the middle & of the chord and the contact
point ¥ of the tangent parallel to it is divided into three equal parts.

If we draw the line MN, parallel to the chord, through the division point
@ nearest the are, then the parallelogram MNDC has the same ares 88
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the segment CDFC. Consequently, the sides of the parallsiogram,
CM and DN, can have any direciion, provided only that the cherd €D
and the distance between the two sides €D and MN remain unchanged.

The following construction of the step curve can be given on this basis,
using the method of mean abscissas. The strip widths are so chosen that
the individual portions of the curve ean be approximated by parabolas.
Then the chord €D and the tangent parallel to it through F arc drawn.
Threugh the middle of the chord E, we draw the x parallel which inters
sects the tangent at . The length EQ is divided into three equal parts,
The piece CKLD of the step curve in this strip (which has m—paralkqla
through € and D) is formed by the y-parallel through the le]SlOR pomt
H adjacent to the tangent.

To justify the correctness of the construetion, we ohsewe t.ha.t n

7

'\

G N»"
E ;'O A \J
’:.\
x\’
< 3 K:...
"
A RS B
AN Tie. 40

~\
Fig. 40, instead of subtréctang the segment CFDE from the trapezoid
ABDC, we can subtmci\‘)ie equal area CMN D, This area éan be expressed
as

CMND &.C{MHR -+ ALHN — ALRD

AN
< CMHR 4+ AMKH — ALRD = ACKR — ALED.

Therefcmé\ve can subtract the triangle CKR from the trapezoid, and add
the tzwngle LRD. But this gives the area of the suiface bounded by the
step curve.

lglg 41 shows the lines necessary for carrving out the construction.
The accuracy of the resultant approximation has been investigated by
Thaer.* He shows that it is practical to choose the strip width between
one fourth and one half of the integration hase.

7. Special consideration must be given to the choice of the most de-
sirable integration base, and of the unit with which the ordinate of the
integral curve is to be measured.
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The integration base iz best chosen so that the integral curve just ‘ﬁl]s
the space at one’s disposal, ie., that the curve has r?ughly the_ height
of the drawing paper. To achieve this, we first determine approximstely

Fic. 41 : Fi1a. 42

the mean ordinate of the entire curve.."f{heﬁ we connect the point D,
which is the intersection of the y-paralm through the starting point of
the interval of integration and the {0wer margin of the paper, with the
point E, which is the intersectionbf the y-paralliel through the end point
of the interval of integra.tion.éfgid the upper margin of the paper. This
line cuts the 2 axis at 4, and“the line FG parallel to the x axis through
the mean ordinate at B, The distance AC along the z axis between these
two poinis gives a lmg limit for the integration base, To get a suifable
scale modulus for th¢"ardinate of the integral eurve, we choose the smallest
integral number \s\f\ééale divisions greater than or equal to b This will
generally be in\centimeters. If the integral curve is then begun at the
lower edgg o the drawing paper, it will reach to the upper end. The
smaller the integration base, the steeper is the curve. If, for any reason,
a very.fteep integral eurve is needed, then the integration base is chosen
qui’be{sma.ll, and the integral curve is drawn in several steps, instead of
thie hsual one. Evervtime the upper edge of the paper is reached, a new

Jbeginning is made below at the same abscissa, or at some earlier one.

S

The seale modulus of the ordinate of the integral curve is determined
by the following consideration, If the scale modulus of the z axis is E.
em., and the ordinates of the given curve are plotied with the scale
modulus E, , an increase of the ordinate of the integral eurve by one unit
corresponds to a reetangle of B.E, cm.?, or in Ey ¢m., where Ey i8 the
scale modulus of the integral curve. By (1), this must b:a

bE, = B.E, .

The modqlus of the ordinate of the integral eurve is then determined by
the equation
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— Ez'Ev
= —-—-—b .

(n Ey

8. The integral curve can also be drawn mechanically.: It is only neces-
sary to have a drawing device which traces a p.l,qub, the slope of which

\’

/7

~\J Fie. 44
3

\is proportional to the ordinate of the given eurve. This deviee has a
pointer which is moved by hand over the given curve. Buch an instru-
ment is known as an integrator. The most commonly used integraph
was constructed by Abdank-Abakanowitz® and improved by Napoli and
Coradi. Fig. 44 shows the schematic diagram of this apparatus, while
Fig. 43 shows the Coradi model. It consists of s carriage with two rods,
L and I/, parallel to the ¥ axis, which may be moved in the z direction
by means of the rollers r. The slope rod D slides along by means of the
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pin P loeated at the middie of the rod. This rod can be turned ghout

" the pivot M. This pivot is found on the differential carriage W, which

slides along the rod L by means of the tracing point F. The tracing point
F is moved along the given curve by hand. The pivot P moves along the
z axis. If the distance P(), parallel to the z axis, of the two pivots M, P,
is denoted by &, then the slope of the slope rod is u/5; the rod ig therefore
paraliel, at each point, to the slope of the desired integral curve./This is
accomplished by the sharp-edged roller ¢, which turns about & Pivot of
the integral carriage W, . This carriage slides along the rod /)4 sharp-
edged roller can only be meved in its own plane. In {he hifigéd parallelo-
gram ABCE, one side is the axis of the roller. The op;j?sfte side can so
move along the slope rod D (by means of the carriage i) that it is always
perpendicular to the rod. Therefore the intersectiénzl'ine of the plane of
the roller and the paper is always paralle]l to £hé Slope rod D, Therefore
the roller traces a eurve which has at each point the preseribed slope.
This eurve ig therefore the integral curvg."h'he integration hase b, ie.,
the z-parailel distanee between the pins Pand M, can be adjusted between
the values of 10 and 20 em. By this Ipeta-nxs, the integral curve is kept, as
far as possible, within the range of Iuegsurement of the rod,

For adjustment, the differential) tarriage, which car be clamped at
each point of the rod L (whiehils provided with & millimeter seale) i
clamped in the middle of thelrod, and the integral earriage, the roller of
which can be raised by afscrew, is also placed at the middle of L', The
tracing point and the jnfegral roller must then be moved, by means of &
shifting of the inte ¥ater, along the z axis. The use of the integrator is
recommended only ifMa large number of integrations are to be performed,
sinee a simple gfgphieal integration could easily be carried out in the time
required for setfing up and adjusting the integrator. '

O .
‘Q\Zhﬁmmple: A radially symmetrie vessel, the vertical cross-section
.9}'\? ich is drawn in Fig, 45, is to be calibrated. The volume of the
\.f ‘vessel up to the height A is

(12) v = [ e dh,

where r is a function of k. To evaluate this integral, we first draw *
a4 a function of k. In this case, the scale of the ordinate is changed,
if necessary, so that the new curve fits conveniently on the graph
paper. In Fig. 45, which is reduced to onc third sctual size, ome
centimeter was chosen as the unit, and the scale was not changed.
If this curve is integrated, we obtain another curve, measured with
the corresponding unit, which represents the above integral, The
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seale modulus of the 4 axis is E. = 1 cm., while that of the curve
to be integrated is E, = 1/x, becausc = was not eonsidered in the draw-
ing. The value & = 3 cm. is chosen as the integration hase, so that
the seale modulus of the ordinate of the integral curve is then E, =

: 4
4' éll‘i!]llﬂ'l'igé' T :lélllélgé-é T
| F L\
C N
i \MW A\
- o.g"
o o)
e 0\
3 ~\"

‘.g

TT T YT T
s

7

e Fia. 45

1/3% em. ;'\e "1 em.? of volume corresponds to 1/3x cm. of ordinate.
inate differences correspond to equal volume differences.
Ther%re, if the end ordinate of the infegral eurve is divided into
equal subintervals of length about 5.3 mm., then the distance be-
o (tween two consecutive scale marks corresponds to & volume change
)of 5 cc. If we draw a line paraliel to the h axis out to the integral
curve, as has been done at the mark 120 in the figure, and if this
point of the integral curve is projected on the h axis, then the height
h in the vessel has been ascertained at which the capacity has the
value 120 em.’ A non-linear scale is then obtained, from which we
can read the actual volume of the vessel in cubic centimeters.

10. Repeated integration of an integral curve gives the double intfzgra.l
curve; an integration of $his vields the triple integral curve, ete. These
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multiple integral curves can be used for the evaluation of centers of mass,
moments of inertin, and the higher moments of plane pieces and cross
sections of prismatic bodies, as well as the centers of mass of solid bodies,
particularly of figures of revolution.®

The static moment of & plane surface with uniform mass distribution is
zerc shout any line through the center of mass. If it is possible to find
two lines, about which the static moment of the plane suriace is zero, then

N\

by

N
2N

Fie, 4§< “
their intersection locates the center: of mass. The moment of a plane
surface about a g-paraliel at a distance & from the y axis is

*

13) = [ [ e vaa- [ ¢y

where y is the differendé‘of ordinates between the upper and lower bound-
aries, and where the{mioment is taken as positive in the counterclockwise
direction, ]ooking\ih the positive direction of the y axis. Integration of
this expression(Dy parts gives

(14) "-’tqi::.-::f:.(f—m)ydxz(&— b)‘fydm—l-.[;fyd:c’.

'\
If thé\d&fnite integrals are designated by ¥,(b) and Ya(b), we have

) 1= Ya) + ¢ — D).
“This is the equation of a straight line which has Y,(b) for the ordinate

intercept and ¥,(b) for the slope. The line is therefore tangent to the
double integral curve at its endpoint. Therefore, as is shown in Fig, 47,
the first integral curve AR is drawn for the closed area achd {the center
of mass of which is to be determined) from z = 0, y = 0 out. Corre-
sponding to this (and shifted upward in Fig. 47) is drawn the double
mte_gral curve 4,8, . The end tangent of this curve, B,F; , gives the
static moment for the various lines paralle! to the z axis. In particular,
the moment is zero for a y-parallel passing through the intersection E,
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of F;B; with the x axis. Therefore the center of mass must lie on a line”
parallel to the y axis through X, . If the same construction is carried out

B,

1

-

R

..\
‘.\ Fra. 47

for the lines parallel to t?he ¥ axis, a second line is obtained, and the inter-
section of these lines de,termmes the center of mass. ]
The moment of\ fhertia about a line parallel to the y axis at a distance

tis x:\’...
0N o e 2
ORI \"ﬁz f f € — o) dedy = f Y& — o do.

“:

From\ﬁh:s we can obtain
\ 3

(17)

r=g-o [vast2| ¢-n[vard

=~ b)“f:ydswz(z—b)j:f:ydxwrsz:[ydx*.

by & double application of integration by parts. For one half of the mo-
ment of inertia, we have
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a9 T=7= 5 vm +e-nro + no,

with the same abbreviations as before. This is a parabola, which is ob-
tained by integration of the lines determining the static moment, if this
parabola is laid through the end point of the triple integral curve. We
integrate the second integral curve 4,5, once more from the point z = §,
% = 0 cut. We then draw the integral curve B, E.F, of the line B,E,F,
from the endpeint B, of this eurve. The ordinate of this curve, fisasured
in correspending units, is equal to one half the moment of intertia about
the y-parallel with the same abscissa. The moment of inertia)about the
straight line through the center of gravity is naturally azﬁlinimum.

By continuing in this fashion, we can evaluate the.mements of higher
order. The moment of nth order (n a positive number) leads, as Jacobi’
has shown, to a curve of nth degree which can be found by repeated use

of integration by parts: \
b \Y;
[e-ova=c-v e

+ ng - b)ffydz + -
(19) ‘::’f.""
tn = Ve - [ [ [ yaw o oo
g A

)
Jh}ﬁff o [y,

These integralcurves find important application in the theory of beams.
The firstyinteégral curve of the stress curve permits the determination of
the f%z?verse force, the second the bending moment, the third the angle
of inclination, and the fourth the elastic line, if small sagping can be
assumed.®

.\‘: 3

11. The construction of the differential curve of a given curve is of at
least equal importance to the construction of the integral curve. This
method requires the construction of tangents to the given curve. The
tt;gonometric tangent or slope of the curve is then the ordinate of the
dlﬂ’erentj_al curve at that abscissa. However, the construction of the
tangent is possible with only limited aceuracy. This is not due to the
me.t-hod, but to the nature of the task. For each line has a certain width,
which masks the finer fluctuations which are of importance in the con-
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struction of the differential curve. On the other hand, small errors in the
drawing of the given curve, such as are due to the inertia or vibrations
of the drawing apparatus, to the rubbing of the drawing pencil on the
paper, ete., can lead to large fluctuations in the slope, and therefore to
completely inaccurate differential curves. We neglect here such inae-
curacies as are caused by the method of drawing, and set ourselves the
task of drawing the differentisl curve of an existing curve.

This problem reduces to that of the most accurate construction of tHe \
tangents.

a. The followmg method is given by Lambert® for the construction- c\>f a
tangent of given slope and contact point. He draws a number QP chords
of prescribed slope in the curve, bisects them, and lays a sm&}oth curve
through these midpoints, This curve interseets the given Jburve at the

Fre. 48 Pa\d Frc. 40

point of contaet P, through which the ta’,n;gent can then be drawn (Fig. 48),
b. Fig. 49 shows how thig constmetlon can he altered if the tangent
PQ) is drawn. to a given portion of the curve from an exterier point Q.'°
0. Gugler™ gives the fallomng method for the construction of the
tangent PQ to a point pr\a curve (Fig. 50). Through the point P is
drawn & series of secant(wlhch cut the eurve for the seeond time at the

W) Fia. 50 ¥ra. 51

\points A, . These lines are extended an appropriatcly chosen distance I
beyond these points, The points B., are then obtained, and are connected
by 2 smooth curve. If we now deseribe a cirele about P of radius [, the curve
through the points B,, will be eut by this curve at a peint €, which must
then lie on the tangent through P. :

d. Mehmke™ has developed a method from this to find the peint of
contaet of a previously drawn tangent. He draws (approximately) a series -
of neighboring tangents (Fig. 51). He then marks off equal lengths I from
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the points of interseetion A ,, of these lines with the given tangent. Through
the points B, thus determined, he draws a smooth curve, which cuts the
given tangent in @. If the distance { is laid out from @ toward the curve,
the point of interseetion P is determined.

Tangents can be constructed more rapidly and also more accurately
with several simple devices. The best known of these are the mirror ruler
of Reusch, and the tangent drawer of Pfluger.*? ~

12. The drawing of the differential curve can be carried Dut.ii:a\series of
tangents are drawn to the given curve, This s shown by“the following:
We can draw directly the differential eurve which cokresponds to the

., '\Q’
T [ 4 £ i
B 2 [
R ?F
— .’\ S S S
1 -~ Ve !I !
29 ) i '
. o\ ! P
L R S S —
b= L S tr—s
\\ o ' £ X
RSNav [
+ &)
\\’
» Fza. 52

NS
tangent polygon ABCDEFG (Fig. 52), constructed by the above method.
This has $he form of a step curve. The height of the steps is found by
mea;p’ f 2 pencil of kines whose rays are paralle] to the corresponding
tangents. Also, the points ace at which the desired differential curve
\[(comneides with the step curve are easily found by vertical lines drawn
Jrom the contact points ACE of the tangents. But the drawing of the

differential curve itself is difficult. If we reverse the construction of the
Integral curve by the method of mean abseissas, we find that the desired
_ eurve must be drawn so that the triangles, lying adjacent to the same
vertical portion of the step curve, are equal. The intersection of the differ-
ential curve with this portion of the step curve can be found by construct-
ing the tangent of the given curve at the point with the same abscissa
(dotted lines in Fig. £2). The drawing of the differential curve is ma-
terially simplified by a determination of this point of intersection,
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13. Finally, we shall disecuss the defermination of ihe arc length of a
eurve, This Is, of course, measured by [ ds and is then approximated by
Y. as. To determine the length of the arc of a given curve, we adjust
the separation of the points of a compass to a small length d. This length
is marked off as a chord, perhaps n times, along the curve. Then, approxi-
mately, s = nd. The difference between the curved are and the somewhat
smatler chords can be compensated if the compass points are set some-
what outside of the curve on the convex side. In addition, special com-
passes have been constructed which close up each time after measuring
off & chord. They then give the sum of the lengths of the chords me{lsqred.
These have the advantage that the length of chord varied to correspond
to greater or lesser curvature. . \,\

A measuring wheel can also be used for the measuremengofidre length.
This is employed in the measurement of distances on maps, Buch measur-
ing wheels are not to be recommended for small a;c.fieﬁgths, since the
inserting and reading accuracy are rather small.\Fhe’ distance between
two markings corresponds in general to the lengtl of 1 em. For more
exact measurement of curve lengths, speei ‘H‘evices known as curve
meters, are constructed by Amsler, Coradi\afid others.

To determine the length of a space curv{ei given in piecewise projection,
we consider a eylinder through the curve, perpendicular to the base plane,
which is unrolled. The cross section.giitve is divided up equally by means
of the compass, as described abaye*and this graduation is transferred te
a straight line, perhaps the z Axis. Then the position of the individual
segments is estimated antkis projected on the x axis. The heights are
plotted perpendicular to@he' x axis at the given points, in the same seale.
The points so loca.teﬁ\éré' connected by a smooth curve, and the length
of this curve is measyred.’*
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14. Further applications of graphical integration are found in Gerstenbrandt, op. it;
Massau, op. cit; Rothe, Elektrotechrische Zeitschrift, 41 (1920), pp. 999-1002. The appli-
cation of graphical integration to the determination of the road time of railroad traing
iz also importunt. Cf. Nordmann, Glasers Annalen, 101 (1927), pp. 163-175.

15. Euler’s Formula.

1. For the evaluation of integrals, as also for the rapid caleulation of
sums of cquidistant funetion values, a formula can be used which was
advanced by Euler' and probably independently by MacLaurin?® This
formule gives a value of an integral by a series of function yhlies of the
funetion being integrated, and of derivatives within the*Bmils of the
interval. To derive the Euler formula, we start from the\integral formula
12(9) which follows from the interpolation formula of Bessel:

o Fch ] w' £ —
f Jx) dz = K ch;—-ﬁ%—flé(x—ﬂﬁ)
& N

Al s oany o 101 % 0E 2497 o
790 (B~ A~ oagp Qe Ba) + ggaesnn (41 — 4D

with the remainder term g ™
S\

@ B = k™S, - (00— Dh S £ S 2+ (1 0h

where (' is the integral overthe function of the nth term of the Bessel
interpolation series. 4 :

In this formula thefg"a))pear only values of the rows 0 and &, i.e., mean
values of the values}sppearing in the difference scheme which lie a half
row higher and lower. But the same mean values would have been ob-
tained if the derivatives of the function had been formed from the repre-
sentation by/meang of the Stirling formula. From 11(6) we find, by con-

tinued diff\e'r‘erftiatjon,

’\n R -T 1—— 1——- 1 —
,}:\ hlf(xu)zau—gag+§aagﬁi4_0 Teen,
'.\".
M\""' ’ e 1 7
\ESJ hsf”(xa)=A§—ZA§+I2—OA§-—-,
Bf) = al— 147

h‘_?f?{%)z'ﬁ:"' ] .
if we set £ = 0. Here the function J(z) is ‘nserted, instead of the approxi-
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mating function S(z), under the assumption that this is differentiable a
corresponding number of times, By step-by-step elimination, we obtain

AL = K@) -~

8 = WSO + 3 KV -
@

A = B a) + i B £ () .i% K -, . "\

- O\
8 = W) + § WP + 135 WO + g FI VG

Corresponding Va,lues are obtamed for the A, . If these ,}'@Ji’ﬁas are sub-
stituted in the given formula, we obisin Euler’s formu&(g )

f O A e st N> 1

6 s U7 — ) — 30240 8y

+ 120};600 (f('n(x) _ wj(@q’)

The coefficient of the nth term.ds usua!]y written B,/n! where the B, are
the Berroulli numbers®. The factor 'C of the remainder term will naturally
have another value here thafiin the above formula, but this value will not
be derived. We now wr;te put the Euler integral formula for the double
interval: \\

[ r@ @ S~ G+ vt~ B ) — 1)

{6)
% (%) SEL gy — §1(g “)) (ggio (fm( 20 — fm(xu)) U

2 &

24 me this fsrmula, the form of the expression can be derived which
PATRS Sused by MacLaurin, and which employs only the odd ordinates. We
\ﬁrst eonsider the formula for the interval from 0 to 2k with the limit
ordinates y, and y, snd mean ordinate gy, . If this funetion is sufficienily
differentiable in the interval in question, it can be expanded gbout the
middle of the interval by Taylor’s series, so that

@ Yo+ o = 2y1 + R ) + 2 f””(:vl) + -

If f'(x} is developed in the same way about x, , and —h and -+F are
substituted and the subtraction f*(#;) — J'(x.) performed, we have
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Ko ree B o
(7a)  frix) — Iz = z(h'f”(zl) + 31 ) + gif {z,) + )

If the value obtained in this expression for f"(z,} is substituted in the

expansion for y, - ¥ , WE have

e Ra L REC R CR Y

N\
1 1
- h“f“”(zl)(a _2 a) Oy
o\
(8) O
'2}1"’ L3
= 2 + 50 — ) = B — 2y
: O
b
F-S'_I fsi(xl) .__'\;

K72
If the value of £ (z,) is caloulated, iﬂs\t\ﬁé above,

(8a) f""(ws) — [ (me) = 2(&1‘“”&1) +3i f“”(x,) + B 50 fm(z.) )

and is substituted in (8) 'We» obta.ln

o + 1) ='%’y§}' bt = 5w = Ko — e
&
9 “\\ \ y
\\\x; = 2 + 5 (e — @) — 5 076 — 7))

f‘ﬂ’( ) + hf‘s’(xl)

If we continue in this way, we get

17!3, AFD ..

y : I 3%°
A0 yo + 32 = 2y, + 5 af 5 AP + S A7 —
where AF° = f“’(g; ) — f"“z,). Now, if we take the formula (6), which
was written Por a double interval, snd substitute the value caloulated
here for g, + Y2 , We gei,
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[ 1
B oo B L B yew _ AT
= 2 + 5 Af — 51 Af +240Af” —mﬁ'f‘”
{11)
5 &
Q&)_ Af’ + (?;‘3' Af”’ —_ 2h) af(s) 12((2’3%00 ﬁ_f(n -

(2h) afr — 7(2h* 31(231-}“ AFS — 27(2h)° Afu;

= Zhys + sre0 777 T geves0 Tors5a800

‘.‘

If we write this formula for the intervals x; to =, , 2. t0 % , etc and sum,

we obtain the MacLourin fmn of the Fuler formula: "
[ s e = 20 % g+ B ) ~ 7Y
3
12 — IO (prnian) — 7 +§§§§§L ) = 1)

%4%—83%00”’@2.) SFo -

3. By means of the Euler formula other formulas can be derived for

the sum of the nth power o_{ ibe integers, where n is a positive integer.* If
Jiz) = 2™is subst.ltuted\l\the Euler formula {5), there results

f L] — o “_ n—‘].
L= X e DL Rk T

(128} N
\ Ln= D0 =2 e
\\ 720 ’
80 thﬁtn
A
aa_nn = D=2 .5
\Ml‘a‘) E?\ =aritE L 720 - '

Thé last term eontains either & or «° as a factor. From the above formuia
we obtain, for various »

&+ x POy -
n=1:—"2—, ﬂ—34 2+4,
(14) e e PR
n=2:-§+§+6, n = -‘5‘+2+3_30‘
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Similarly, formulas for the sum of the nih power of the odd infegers can
be developed by means of the MacLaurin formula (12). If we set flz) =
z", then

1 fh tdx = @9 Z 2 — 1y

2 2n 4+ 1
(14a) ) . ) .
7 e mn — Din — 2 ——
+ ﬁ (2’5) - 720 (2") a ]
: A
or A\
: L@ m e, T = DR D)
(15) Z @ — 1)y = Bn L1 12 2o + 7 (27
S
As special cases, we have the following: ’\
n=1:+, n =32 --:.{\.’
(16) s ~N
4 oD
ﬂ=2:—§—§x, n = ’:.:.5.‘6—"{5__“3_'___

If the function appearing in the 'mtegral of the Euler formula, is easy
to integrate, we can also use the formiula, to obtain the sum of equidistant
function values. In this case ‘we'can also use a formula developed by
Lubbock.” This does not use all the given summands, but only s smalt
number of equidistant v

& _

4. In general, thé\derivatives are difficult to form. Therefore, for ap-
proximate calculd®ith of definitc integrals, we sometimes use only the
terms of this f*mula containing the values of the function. By combina-
tion of the.Ealer formula for various interval widths and the MacLaurin
formuk \!{sm ics of very well known approximation formulas are obtained,
as wgllf the corresponding correction terms. (ef. Art, 12},

.If .anily the function values of the Euler formula are taken, the so~called

~trapeszoid rule is obtained:

a
with the correction term

h%
(18) Kr= — 3 (") — ') + oas (777 — 177/ -

In exaetly the same way, the funetion values of the MacLaurin formula
can be used. Then we obtain the tangent trapezoid rule:
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(19) Jo= (@ + a4 - + 45,12k = 25 Z'yn—i s

with the correction .
B, , 7ht '
200 K. = “6‘ (F{zn,) — f'(m)) — 3Tsa (F"" {2y} ~ Frtme)) - o

The first term of the correction has the opposite sign in the two formulas, 7\
If we set &« = 2v, the term is half as large in the first case as in the second.
- H we judge the value of the approximation which car be obtained mﬂb
such & formula by the number of terms of the Fiuler formula w}ncb ean
be represented by it, then it is obvious that the firat term of the eorrectmn
can be eliminated by a combination of the two formulas. We“tilen obtain
Simpson’s rule,® already discussed in 12.5:

m\
{21) Js = 2“‘I.P_:;j:_:I£ = Z (yn + dynaa + ym-z),
\ /
with the correction ..\
@) K, = 1) + 1512 () — 1O

The formula is to be used only if t.here Is a,n even number of submtervals
available; i.e., an odd number of fua‘lcislon values, While the width of the
subinterval appears as a squared term in both the first two formulas,
here it occurs as the fourth pofer. Furthermore, the integral of functions
of third degree, whose { ‘Gerivative is constant, is exactly represented
by our formula, for all theterms of the correction are then zero.’

A formula of abouf\the same accaracy as Simpsons rule, which is
commonly known ae\Newton’s formada, is obtained in the following way.
We write the Eutec formula for x = 3p:

=)
o= S n e () — )

\S

) .
\M\\} - + 7];0 Ur”(xsin) - f”’(xo)] 30240 {ftn(mh) - f( >(xﬂ)]

and then write the Euler formula for the same region, but for subintervals
of triple width:

To=3h B ym — snlet e ) e

O 17 — §77(a0) — g V@) ~ £ o+
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Now the terms with the first derivative can be made fo vanish, if we
form

(@5) Jx= %%J'Q = % Eo W F B¥sas1 + BYarsz + Ynsa) + KN!

where the correction is
(36) Ky = — o HU ) — §77) + 355 10 V) = S G

If the number of subintervals is divisible by 6, we can go a s\tep further. -
By combination of the Simpson and Newton formulas, still arother term
of the correction can be made to vanish, If we set » X “8p and g = 2,
we get the so-called Weddle formula:®

.\\
185 — 8J
Jp = = 10 ¥ = Z (o + D¥anid + 'y'sus -+ Bynrss
(@7) K7
+"y?k+\4' + 5yuk+5 + me) + KW ?
where now : v
A ™
(28) Ky =— %ﬁfof;‘{(%p} - f‘s)(xo)) Tt .

There is a large number 01’ ﬁﬁ;ilar formulas, but these shall be sufficient.

§. Ezample: Th &megms fi” sin x dz is to be calculated by the
above formula omthe values sin 0% = 0.000000, sin 15° = 0.258819,
sin 30° = 0. 0, sin 45° = 0.707107, sin 60° = 0.866025, sin 75°
= 0.065926din 90° = 1. 000000.

From thésé we obtain

§\ yr = 3797877 - 75 = 0.994282,
\ ve = 1.931852-% = 1.011515,
Yo = 11.459457 - 5”6 = 1.000026,

yw = 10180524 - 3 — 1 000059,

yw = 12732390 - S = 1.000000.

The magritude of the error corresponds roughty to the correction
term given above,
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If we have function values which contain errors, we must not use
formulas in which the values of the function are multiplied by very
different weights. For then the corresponding errors are multiplied by
these weights also. In such cases the use of the trapezoid rule or
MacLaurin’s formula is much mere to be recommended.

6. As a second ezample,’ we show how, under certain circumstances,
integrals in which a parameter appears ecan be evaluated by thisgs

tormula. The oscillation period of the simple pendulum with an

amplitude « is given by SO\

pvz e dv ‘\

= 2(_) s 8 172 \ o
T g vfo {1 — sin® {o/2) sin® ) 3

2 1V . .o ﬁ)g . égj\i.
“(E) (1 + (5) sin” 5 + (2 1) B

) )

where a series expansion replaces the mtegra,l. If now we use t}}e
trapezoid ruie for one interval widil on the above integral, we obtain

(704 B r () (L e ar2)
TR\ VT a T T2\ c0s /2

N

ANE .@)‘-zg 1. 13 .a
@0) =“(E) ¢ {\(2 gttt g

N\

(29

'C\' + 5" 371.6
The correr(taon for this formula is then
15 a , 36-20 . 5a :l
(31) R‘T = —x ) [ + 556 Sm° + o sin’ g .

N\If.fwe approximate by MacLaurin’s formula, we get

3

Ju = “(Z':) a —(1/2)1sin2 a/2)?

AN 152 . a l'_rb_',l"g
() o G e g+ o 3o
3

1

BiIl

32)

ko

o
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'Fhe corresponding correction is

z”’(s e 15 . 35-27 sg )
@3) Ky = "'(E) 61%0" 5 + 555 %" 3 + 1537550 ‘
Here Simpson’s rule gives essentially no betier approximation, as
can be seen immediately. On the other hand, the first terms of the
correction series cancel if we take the arithmetic mean of the two
approximation formulas above. We then have

~z (I 1 .L:\)
@ =3 (9 3t (1 —(1/2) sin® a/2)'* +'2‘§ba a/2/’
with the correction R N
. - PARE ( 35 .\’ )
(35 - —w(g) 35 sty ).
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7. If the number of intervals is not divisible by two, that is, if there is an extrs
interval, we assume that it Sche first. It ia then customary to use for the calculation of
the integral in thiz mterirah the formula

\\

{23} ‘ Ya = _2 (510 + 8y, — Ya),

which ig knuWn VEs t.he special Bimpson’s rle, To investigate its accuracy, we develop
yina senas}bout the point a:

N ., 4
U= SGo) + [k + "(wo)% + () % + £ ) 3‘1 + -
nd ;Iié correct value of the integral for this interval is then

\ 4 Fath h, k
/ = Tk + @) g + e

+ 1) By 1) S

In addition, we find
Shyn = 5hf(xo)
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B = 1) + BT ) + W7+ e
+ 1ROy — by = — il — 2P ) — 2

4 2
— 207y — 2RO,
By collection of terms and division by 12, we get . R ¢ N\
<\

¥s = hf(z) + %f’(a:a) + % ') — 3’,‘—6 SRR .

The correction is then ’\'\ /
| o2 18w SNV
24 = — T — \
28 s = gy 17K + 365 7Dk
The term in which the third derivative appears is then.fx; etror. This term is still given
correcily by Simpson’s rule. The formula is occasidnally used for integration of differ-
ential equationa (33.5) beecsuse of the small fagtors’with which the third ordinate &s
moltiplied. - R

8. Weddle, Cambridge math. Journal (1854),"p. 79.

9. Poukka, Zeits. J. angew. Math, . M&L\‘L,V {1025), p. 521.

SN g

16,.=.tfyﬁan Value Methods.

1. In addition to thex\wthods given in Art. 12, which use differences
for the caleulation pf-definite integrals, a series of formulas have been
produced which e8ek’to approximate the value of the integral by a mean
value of the particular function values of the integration interval, multi-
plied by a\(q,rr&ponding weight, If we consider the function plotted as
& curve,dhe’ surface aren under this curve is approximated by fhe area
underdourve of (n — 1)st degree whick passes through the end potnis of the
ordinadtes enlering into the caloulation. For the derivation of this formula,

\263 start from the simplest Lagrange interpolation formula given in
8(21): :

% fzelz)
- = + [z2 --- $,]QD{$),
W 1@ = 5 ey T
where o{z) = (x — z){x — 22) -~ {&# — x») is an intp:gra.l. f}mction of
the nth degree with roots z, , %z, - -+ , % . If this expression 1s integrated
between the limits a and b, there resulta
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@ [ 16 de = X Bjw) + [ o - metw) da,
where

el
3) B, = j: - x.-)rp’(x,) dz

is written for the weights with which the individual function values are
to be multiplied. If we set f{x) = 1, we obtain for the sum of these weights,

independent of f(z), Ko \
% N

@ b-ag=2B.  \7

Except for the remainder term, then, the arithpiéic mean [o f(z) do/

(b — @) is expressed as the mean of the sepapate Tunction values, multi-

plied by the corresponding weights, i.e,, by\

\ E B f(x.
(5) —

n

», ZBr

&3 L
\

For the following conslderatmns, it is practical to change the limits of
integration to = by the suPstitution

- Qf_ﬂ b—a, _b—a
®) e (O L L T
so that the intggral becomes
‘\’ b b—a [
@ N f 1@ de =222 [ sy au.

N
We\ihai new consider only the latter integral, and set

‘,\..139 I > A5 + f (6t )ty - LJold) .

2. The function values to be used for the approximation can be chasen
with complete freedom. The weights with which the various function
values are to be multiplied are determined by this choice. In general, the
Junction values will be chosen symmetrieally about the middle of the interval,
In this ease we have, for an even number of ordinates, n = 2m,

@ o) = —OE -8 - (& - &),

and for an odd number, n = 2m - 1,
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{10) o) = U —R(F — &) --- (® — ).

Then the weighis belonging to the symmetric ordinates 4, and 4_, are
equal; e.g., for the even number, n = 2im,

M- — @) - ()
(b &_LU—MMm—ﬁwm-m

where the factor (&2 — %) does not appear in the dencminator. If ¢.ds, -
replaced here by —1, , the parentheses containing the squared terms are
not changed. In the denominator there appears — (¢ + )24 inst-eé& of
{t - t)24, . I further the integration variable is replaced by(¥ then
the parentheses containing the squares are again unchanged @'na’we have

N Sl et ) il B Calldl Y IPSS 4
A= fu (¢ — t920(8 — 1D -+~ {tc — &).*SA&‘)

dt,

(12)

G S R R - W
- f"" (t - t:)2zx{ﬁ - ﬁ) P .(.QQ t:,) dt = A; -

For the case of an odd number of ordinates,w = 2m + 1 only the factor
#/t, is added under the integral in the jutegrand above. This factor does
not change sign with the substitutienyof —t. for &, and —¢ for £ In
genersl, therefore, when the valuqs.uff the function lie symmetrically about
the middle, the weights associated\bith these symmetric function values are
equal.

3. The oldest ehoie\ﬁf"funct.ion values, as is found in Newton' and
Cotes®, is one in which" the funetion values chosen are equally spaced,
making use of the ‘enid ordinates of the interval. Function values are then
to be chosen fg{ thé following abscissas for even n = 2m,

em—-3, w—25,, __k h
;“'-"' ?’i,_—-. 1‘ h, - n — lh, R n — 1, +n__ 1)
(20 .
o) +2 B Th R
O n—1 TR
dnd for odd n = 2m + 1,
n—3 n—5 2k _ 2h
“h;_n—lh;_n—lh'“’_ ~1’0’+n-—1’
{12b) 3
4h =
+n._-1+“-+ﬂ—'1h,+h.

The soefficients are given by the integral above, in which these values
are substituied. For even n = 2m, we have
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where 1 = 2p.

Ezample: For n = 3, we have

—k +1
Ao = 1-1!-1:]_1 ¢ — v

‘lf_ '14-1 B 4
'“[3 "l T8
{14a)

h

R +1 @ fﬁ vz]u _ 1
Ao = 1-21-011‘_1 o+ 1 do = 2[3 +3)," 3"
and therefore

% L)\
y =% -+ 4y +yal + B, A\

ie., the Kepler rule which was derived in other ways i ‘1;3(12) and
15{21). By suitable calculation, the following numeiigé;;l values are

abtained:
fi=24du = h, ,~\\~‘

4h h Ay
n=3 Au*? A-l'-:gr :,"‘.‘\

3h N
ﬂ=4A..;=‘Z' A..2=Z AN

4 082 7
n=2>5 An=ﬁh .;4’.;1‘?4'_5‘}]1 Aa—z_‘45h’)

.\\.,.

253 25, 4 .19
nzﬁA.lﬁﬁ;}ﬁf A-2=Z§h 44-1-:! = 144?"")

\ ¥/

:'\‘": 18 41

n= 7\;A\:= 16"{;—5}& Ao, = ‘I'i_oh A = ggh Ay = %h,etc.s

4. The remainder term of the formula contains an nth divided difference.
No# it ean be shown that in general the formulas with an odd number
\kf drdinates are the more advantageous if the value of the appermatlon
is estimated by the number of the terms of the Taylor expapsion of the
integral which will give the approximation value exactly. This has already
been done in 15.4 for Simpson’s and Newton’s tormulas for the case of &
single interval. We Yimit ourselves here 0 this case, where n = 2m + 1.
According to 16(8) and 16(10) then, the remainder term has the value

+h =
R. = j [ty l‘.l) 3 tl » _!1 LI tm ’ ‘_tm]‘(!’2 - th e (‘2 - t"‘) dt’
-k
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or, if we use the values of {, given above, introduce a new variable v, given
by 2hv = {n — 1) t = 2mi, and consider that the expression in bracksts

then becomes a function of »,

(15 R = (%)”"” j;:"" {t, 4,1 Pl S UL S "tm]l’-’(”g - I)(”z _2g)
- (@ — m?) do,

We transform thiz according to Steffensen®: For abbrevia‘r{ion, we sgf
P@) = o(® — DO — 2) -+ (° — m?); also, Q) = [2LPG) dv. Ob-
viously, @(—m} = 0, but also Q(+m) = 0, since P(v) isgin‘odd function:
P{—v) = —P(»). Now, to show that (1) is never g&rﬁ“iﬂ the interya)
from —m to +om, we examine "G

F4l ¢
L= [ Po)di

where r and » 4 1 are consecutive roots.QL’P(v). It can easily be seen

2%

that the relation R
—rt+it , W, r
16) 1., = Py dy = “Pdy = — = —F._
(16) S rw I P IRCE 1
exists, If we now go back to ‘g-hef‘s}allue of P(v), we bave

I,_1=f; -+ m}tv’;m—l}--- ® — m)dy
x..,‘\. .
{16a) =f’\I};‘:I—m-—l)(v-i—m—-%---(vhm—l)dv

.’.\.;;1‘!.‘ —m~1
xt\T.‘/: >+ m P} do,

Now, since P(v) does not vanish in the observed interval, the mean value
th{:aﬁ can be applied and we get

Kby 1., =T om = L P ay T m - lne<o<rin
) %+ m r 74+ m
Since § <m, ¥ > O, then | I, | > | I, |. The two have opposite signs
because of the sign.of P(). Upon consideration of (16), it follows, if

—m = 0, that
I, > —I > ) *x=I_; > :FI—I.

(the sign of P() can be chosen to correspond), Le., the funetion Q)
cannot be zero for negative v, nar for » — 0, Since the function is sym-
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metric with respe-:ct. to the ¥ axis, Q(v) does not change sign between —m
and +m. If we integrate (15) by parts, and remember that Q{—m) =
Q(+m) = 0, that d/dv = (h/m)d/df, and also recall 11(2), we get

h Em+8 +m
k= _(;) f_.m Q{f})[t, t} to ] i H _t'l cer b H —f""] dv.

Since, a8 was shown above, Q(v) does not change its sign in the interval,
we cah apply the mean value theorem of the integral ealculus. Therefore
we have

N
KON
. .

Im4s | "
= _(E) U). t, b, i, ¥ =t g, te _'tm] i Q(”) dy: Y ;.\

(B <t < ).
If we integrate the latier integral by parts once again; we'get

[" a0 @ = weon ~ [ e & 3 |7 Py do.
Therefore, by 8(24), if £ exists and is cpntﬁﬁuous in the interval,

R“(zm—}-z)!(m) [ ve NES ) 6 ') da,

™

N\ b < T K

where the integral is always Eéa,tive so that the remainder term has the

opposite sign to the (2m J{2)nd derivative at the point in question.

Tor example, for the case n = 3, for which the weights have been
caleulated above, \there results

i hﬂf(&)(T)
15 4! -

In tHe'eases 7 = 5 and = = ¥, for which the weights are also given
abfive, the remainders are
AR

AS
Z". sf(“(f) 1 . _ -
RSk [~ D= -

m\'“~ 1 f(ﬂ}(T). o 16 . JE{S)(T)
N/ Bo=— gk Ty Be= ~ gzt el

5. With a second group of formulas, the entire interval is divided into
equal subintervals. But the end ordinates of the main interval and the
hounding ordinates of the various subintervals are not uset_l for the fo_rma—
mation of the méan values. On the contrary, we use the middle ordln?,te
of each subinterval. These formulas are usuaily called 'Ilfa,ch_mfm’s
formulas, although only the formula derived in 15(19_), which coincides
{x = 1) with the first formula derived here, is due to him.
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or, if we use the values of £ given above, introduce a new variable s, given
by 2hy = (n — 1} £ = 2m{, and consider that the expression in brackets
then becomes a funetion of

a8 = (5" [Tl 0, e, -kt - 0 -

s 0 — m®) b,

We transform this according to Steffensen: For abbreviation) we set
P@) = o»(® — D" — 2) -+ 0 — m®; also, Q) = [24 Rlb) dv. Ob-
viously, @(—m) = 0, but also Q(+m) = 0, since P(r) iz-an odd function:
P(—1) = —P(1). Now, to show that Q) is never gett’ i the interval

from —m to 4+m, we examine A\ )
T4+l 7 {"
I = f P(TJ') dt’,'"‘:\

where r and » 4+ 1 are consecutive roo@s{Qf‘ P(v). It can easily be seen

7

that the relation K 4

a1, = [ :'”P@)du - [ P - — | Pow=-1.

r=i )

exists. If we now go bhack to j;hé:ﬁa,lue of P(v), we have

I, = f L O Fm ~ 1) e o~ m)db
o\

£ 3
[ %0 & W 4

(168) =R m - Dot m— D m - D

NS prtt

v = m o~ 1
o /. v+ m L@ do
- .:‘\'$~ \ .
Nowginte P(v) does not vanish in the observed interyal, the mean value
tbe ﬁtm ean be applied and we get

+

:.. :’o 7 — m — 1 re1 = .
a6y 1, =2 / PO b=t o cp<rt,
r ‘!) m

v+ m

Since & <m, ¥ > 0, then | 7,| > |1, , f. The two have oppasite signs

because of the sign of P(¥). Upon consideration of (16), it follows, i
I, =0, that

In> i > Iz oo > +7 ., > *I,

(the sign of P(») can be chosen to correspond), ie., the funetion Q)
eannot be zero for aegative v, nor for v = g, Since the function is sym-
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metric with respect to the y axis, Q(v} does not change sign between —m
and +m. If we integrate (15) by parts, and remember that Q(—m) =
Q(+m) = 0, that d/dv = (h/m)d/df, and also recall 11(2), we get

h E2m+3 +m
R = —(E) f_ QW bt , bt , —h -0 tw, —t,] du.
Since, as was shown above, Q(v) does not change its sign in the interval,

we can apply the mean value theorem of the integral calculus. Therefors
we have \
A\
k em+3 +m 7"\
R= —(;%) atibo, oy =ty oy tns —t,-lf Q) do,,

(4. <1< b
It we integrate the latter integral by parts once againywe get

[ o a0 = paon - [0 @y [ pw .
l - ) ‘\ W —m
Therefore, by 8§(24), if F®™** exists and is gon#inuous in the interval,

k= ?2mm-+|- Ez;)i (%z) [ e - DELE 20 o O = )

N —te < T ln,

~
24\

where the integral is alwayg\%egative so that the remainder term has the
2

opposite sign to the (2m dw nd derivative at the point in question.
For example, for the case n = 3, for which the weights have been

calenlated abovethere results
AS

O (a3 R s 4 h"'fm('r
- 2h3i—4£,_"—)fu P — 1) do = — ﬁ—-——241 .

In thetases » = Handn = ¥, for which the weights are also given

,gbp've, the remainders are

a\" Em . : 16 .. f(a)(_rl

hY% R‘=P§11h7 6(!); Ry= ~ 13" 8

5. With a second group of formulas, the entire interval is divided into

equal subintervals. But the end ordinates of the main interval and the
bounding ordinates of the various subiniervals are not used for the io.rma—
mation of the méan values. On the contrary, we use the middle ordm.ate
of each subinterval. These formulas are usually called _MacLE;mr:m’s
formulas, although only the formula derived in 15(19), whieh coincides
{x = 1) with the first formula derived here, is due to him.
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Tn the case of an even number of funetion values, the ordinates for the
abscizsa valucs are

n—-1n-—3 1 1 3 n~8n—1
_T; 7 [ n’+n’+n’ ' P
and for an odd number of ordinates, ~
_n=1 _n=3 ~ _2,.,2  n-3n-M
n n ] o’ nl ] 7 f’.\..h .

o\

If we substitute the values for {, , introduce u as a,@w: “varinble by the
equation hu = nf, and set n = 2m, the coefficients .in‘thé first case become

(_l)tn/s}—;-_h K '"‘:\i'
= 72" n/2 + & — l)!(n/zx:\.;x)!

f+n @ — 1567 T’éz);" @~ (- 1))
fa*-' (2« — 1}

dy

-n

amn
(=N
2" m(m ok = Dim — !

f.*\’*\cu” ~ 1N —3) - 6 = @m - 1Y)
.\'\u;an . Ho— (2K - 1} ’

For example, for » = 4, this gives

—4

:’.‘\}A —i s .
@7 A= g L 06— 9

\s.'

K\ =_£[£+£maaﬁ9u“_1_m
AN £ T3 T2 IR T
W (e

h +4£
-2=?2_-31—-0!f—4 u* — D(u + 3) du
S D 13k
T2y T m g ] = Gn

The second coefficient could also have been calculated on the basis
'that the sum of the weights must be 2. This fact is better used for check-
ing the ealeulation. The formula is then
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2h
() y= 15 B gy + Yeevra) + 11—t + o)l + R

With these formulas also, the best approximation formula is given for
an odd number of ordinates; that means an odd number of subintervals

also, In the case n = 2m + 1 if we introduce the abscissa values given
ghove in the integral, and set uk = nf and # = 2y, then the relation

becomes ~\
A, = h(___]_)‘“"‘ ’ :«\.
R2m 4 Rl — 6! R
- f+(2m+1) 2 uﬁ — 22){1&2 _ ) (u _"(‘ﬂ‘— I) }Ju
(18) —{2ma1) w — 2"""\.'\'"
= 2h(—1)""" V
T 2m 4+ D{m+ lm — w)! \\,
+m+ (1 2 —_ ¥
f rom — 19G¢ —\2 -0 m)dv.
(=m+(1/2)} ;’:‘9 — K
For example, for » = 3,
—2}& +8/2 _ v_[_ _ ]w}z _ ﬁ
Au = 3 11 1‘ —8/2 (U " 3 r) dﬂ - —3/2 2’
(183‘) \ P L
2hl v _ 3k
A = 5w {Ku(v—!-l)dv-——[ +51.. =%

Then we ha.ve ke ‘

)

¢ \ !/ =g [2?}0 + 3(Y1sa + Yoz} + B.
x'\

The Ot{:f‘ments of the other formulas may be calculated in the same
&)

Way\ ¢ following values are obtained:
,"\o' n=1: A, = 2k,
~\J
4 n=2:4,, =h,
i) 3
n = 3: Ao=‘2", Aﬂ——zh,
. 13
n:4:A.;=L2ih, A"’=§Zh’
67 2 275
n= 5 A= geh A =gl A 576k
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127 _ 139 _omr
n = B: A*l = é’%‘h, A-—z - 640 h! A“S - 840 h’!
6957 6223 49
=T Ao = —rogshs Am = Togg s A = 3G M
4949 ~
Aws = 13894 * X

Negative weights appear in the last formula above. )

6. As was mentioned previously, the formulas withi“an ‘odd number of
ordinates, and also with an odd aumber of subintzérvals, are the more
advantageous. If the function is sufficiently. dﬂ%‘erentiable, and if the
(2m + 2)nd derivative is eontinuous in the cloged interval of integration,
then the remainder term can be put in th¢\iorm due to Walter,” in the

case n = 2m + 1: ™
_ }L_ Im+3 f(2m+2)(f) m:+1€2~ ; . . 2 2
19 R‘.—-Q(m) ——-—“(2m+2}!‘£; oot — 1% - 0 — ) db

where —h £ v £ +h. It can ,]a,é:éhéwn that this integral is always positive,
g0 that the correction has the same sign as the (n + 1)st derivative.

In the case n =\§ valeulated sbove, for example, we have

¢\J ey o2
‘R§\¥ 2h5i—4—%—)j; 2*@° — 1) dv
(19a2) 9\

CH RIS I I:ﬂ v’]’” 2 sy
) :\ = 12 Rf ) 5 5, = 820 A ARICON
,&kﬂle same way we gel

4 &

N 557, ? g
\: \ {19b) R5 - —5 (%) ftﬂ}(T)’ R7 1718381 (%) f“”('r}.

N
\¥
\:

193536 ~ 66355200

7. 'In the formulas derived so far, the individual function values are
mult%plied by various weights, If now we consider function values de-
termined empirically, then these themselves have some errors. It is not
a.d‘.rantageous in mean valuc methods to multiply the errors with different
w.elghts. The error of the result is a minimum if the factors of the indi-
vidual errors are all equal. Such formulas were first derived by Tsche-
byscheﬁ"“ and therefore have been named after him.

In t.hl:‘i case the coefficients A, are prescribed and the integrals (11} give
n equations for these coefficients. From these the n unknown abscissas
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ean be calenlated for which the function values are to be chosen. These
equations are not independent of each other. There exists among them
the relation Z'{ A, = 2h. The A, could be given arbitrary values which
sutisfy this equation. If the values of the function are further assumed
to be symmetrical, then the abseissa of a function value z = 0 is de-
termined for odd # = 2m -+ 1. Now 2m values are to be calculated from
the 2m + 1 eguations among which a linear rclation exists. Therefore
only 2m of these are independent. In this case the 2m equations are
reduced to m because the coefficients belonging to the symmetric function
values have the same equation. The integrands coineide for od§ W' in
the numerator, that is, except for the factor (f — &) or (¢ 4. “The
mumerator is £ — &) --- (& — £), except for these factors, a¥d there-
fore contains onty odd powers. But only even powers make @ contribution
1o the integral in integration between the limits —h and &, for the upper
and lower limit values of the integral cancel each ¢thér in the case of
odd powers in the integrand. Therefore, only the part of the integrand
multiplied by ¢, and not that multiplied by :l:p,}; makes a contribution
to A, . These parts are equal for A, and AS‘ % Consequently the same

equations are obtained. We limit 0u.rs¢;k{es‘ here fo the equal values
A, = 2h/n. ‘ ™

Ezample: n = 5. The equatigﬁé become
,’ -’;ﬁ ) 2 — 2
ao=2af ( — O = &) g

n &t

N &2 1 2nin).

1

{ +h 2
e\ 2h ot + 6 ~ 1) 4
O A f_,, 286 — ta)

Q :" = _.___1 — (2_}.*'.5. _ %j t“)
O =L —@m\s 3/

2 f“‘ it + ) = 8) 4
Ao =75 =], "2 — )

1 (g}_]‘i_gh_sf)
=@ -m\s 3"

Since the equations depend on each other, we calculate the values of
+1, and ==t, from the last two. The equations are
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2
%tf(f.f — &) = gh" -

4 o2 _ 2. 2.0p
Eﬁ(iz—ﬁ)—f)h 3ht.

From these we obtain by subtraction

s A
L+ 8=gh, a
)
and by substitution in one of the equations O ”
é 2 — i 4“&
s kG = Zthf
) A\ N
; From this it follows that \Y;
e PRIR-E - (113”’ o = 5= A0
o ! \s 12

We can be sure that theme' ?ahies also satisfy the first equation.

In the case of an even nu’mber of function values, the weight 4,
can be given fo the functlon value for z = 0, and the preceding equat
may then be used. Then, for symmetric function values, m equations
again given for the.determination of the m squares of the abscissas
which the functclor{\ra.lues are to be chosen.

; 7\
P Ea:am\g@ For n = 4, we have the same equations as for n -
: except\that we set 4, = 0, AL, = AL, = h/2. The three equat

the\ﬁ"b“e'mme
) { », h* h“
~0 @+ dr+ =0,
255 247
AN 5 T g A=6E -,
Ve A
1 '\ 4 2h4 2;32

5 3 =i (31 t;) .

From the last two we obtain the equation

r 1_2 2,2 K
=g = — 1

| from which it follows that




S
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54208 s s B — 205y,
ﬁ—-——m K, =Tk

1t ean easily be demonstrated that the first equation is satisfied.
Therefore about the same approximation is obtained with 2m fune-
tion values as with 2m -+ 1, since the approximation is made with
a curve of 2mth degree in each case. The formulas with an even/
number of ordinates are therefore the more practical.

A\

The remsinder {erm has the form P

(22) R, = f_“: [_t) 0} b, —bh, Lo s _"t’n]t(ﬁs - ﬁ) :'((t?"_ t?ﬂ) dt

for n = 2m as well as for n = 2m 4- 1 function valyes\\f the function
has a (2m + 1)st derivative, we can write for this, /

D W T o -
(23) Rn - {2m + 1)! f._; f( )O\f’)t(f‘ “Q‘. (t} m) dtr

where —1 = A = +1. .

Of course, these formulas are useful ,qnif in the case that all the roois

of the equations given by the coeffi¢ient integrals are real. For n = 8

and n = 10, this s not the caseThe following abscissas are given, by
ealeuiations analogous to the ahgve example, for the function values to
be chosen: 4

\

no= itk 0.5773503{{} A = ik,
N \ . gh
n=3:1=0; t‘-l:?’ —+0.7071068h A= g
A
'\“ 1
B = 4114 L 0.1875025k; tu; = =0.7946545h A=gh
N |
o 7,
A=ty = 05 tay = £0.3745414h; tu = +0.8324975k 4 =zh
B = §: £y = =0.2666354h; f.. = +0.4225187h; 1

A=§h.

fy = ==0.8662468h

8, With the formulas thus far derived, it was possible to calculate
exaotly the integral of an integral function of nth degr_ee, in the m_mt
favorable case, by use of n function values. There now arises the quesiion
whether or not the integral of an integral function of higher degree can
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2., 2
Tag - =0 - 208,

taa - =2n - 2rg,

From these we obtam by subtraction

5 N\
t; + tls = n ke: 7\, ¢
6 (\A
and by substitution in one of the equations: . O
o Biaa T AN
tl 6 h tl - 72 }i’\Q."
From this it follows that i
a\J
5 + (11)112 2 2\ R — (11)1!2
W= B s T

s,'

‘We can be sure that these v§lpes'alao satisly the first equation.

In the case of an even numbéj‘of funetion values, the weight 4, = 0
can be given to the functlomyame for £ = 0, and the preceding equations
may then be used. Then,, for‘symmetnc function values, m equations are
again given for the defexrmination of the m squares of the abscisses, at
which the function v&ylues are to be chosen.

Ezample; ‘For # = 4, we have the same equations as forn = §
except t}@t We set Ay = 0, Ao, = Ao, = h/2 The three equations
then Kecqme
h

N (;,-H,) yoee =
R\
A ont  2?
P W B,
ont 25*

?-"3“#3= e — ).

From the last two we obtain the equation

2,30 _ _ K
Skt = -5

from which it follows that
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: B4 2B)” . . B — 2B) .
fi = ——>"—h, t; = ke,
15 i5
Tt can easily be demonstrated that the first equation is satisfied.
Therefore about the same approximation is obfained with 2m func-
tion values as with 2m =+ 1, since the approximation is made with
o curve of 2mth degree in each case. The formulas with an even
number of ordinates are therefore the more practical.

The remainder term has the form oS
¢\
+h . ¢ 2\ \ ~
@ Rom [ 1606, b e e i = ) o € S d
-4 A\
forn = 2mas well as forn = 2m + 1 function values. ,If.;’the funetion
has a {2m + 1)st derivative, we can write for this, ~\

1 *h m+ 2 ¥ 3 2
) R, = @m LD f_h FEmIOHE — t%’:.'\\'u — £y dt,
where —1 2 A = +1.

Of course, these formulas are usetul only\ih the case that all the roots
of the equations given by the coefficiedbhintegrals are real. Forn = 8
and n = 10, this is not the case. Thes following abscissas are given, by
calenlations analogous to the abo?é.éxample, for the function values to
be chosen: ~

2

5= 2 = 057735030 O A= 1h,
N .

= 3: 4y = 0; tuy = =20.7071068% A=3h

A

. '\“ lh

n=4: £,.3§>:i:'0.1875925h; f., = —=0.7946545h A = gh,

S | L

& Bi ty = 0; by = 03745414R; foo = +0.8324075h = zh,

\ }

n= B: tay = -10.2666354h; fuy = :0.4225187K; .

A =3

t, = x0 8662468

8. With the formulas thus far derived, it was possible to calculate
exactly the integrai of an integral function of nth degree, 1B the mf)st
favorable case, by use of n funetion values. Then_a now arises the question
whether or not the integral of an integral function of higher degree can
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be determined exactly with the same number of values, if neither welght.s
nor abscigsas are prescribed, but if both are correspondingly determined.”
To decide on this question, the Lagrange interpolation Formula must fisst
be extended. If we set

(24) _ Flz) = Z b (xr)so(x’)
(z — z.)e' @) -
then the formula 8(21) reads: \
(25) fl@) = Flg) + lazizs -+ zle(2). \ \\
If we now observe that ¢{z,) = ele) = --- =ow) = o it fOHOWS by

use of the divided differences with repea.ted argument‘ {Art, 11), and
under the assumption that the given function is d@erentmble ouce, that

Fla) = Fla) + [, 3, 22, SOyl (@),

AY;
(258.) f’(xz) = F’{fvn) + [2"2 3 Ty ;{;21\’ Tty xn]‘p'(x:!)J
In general therefore, Q \\
O 3 - 7 o
) s g 2 = L)
" ¢'(x:)
If we now apply the thrange interpolation formula to these n values
we obtain \\~~
EEER G e Z ({fr) — F'(z)el(z)
27 2N T ) — )
P |
-+ [x;xi s &y Bz, Tyt  En g B ]ga(ﬁ)
By d&érentlatmn of the equation (24), it is now seen that the F/(z,) are
expressed linearly by f(z,), f(zs), -+~ . If therefore the expression found

hefe is substituted in the Lagrange formula, (25), we obtain

\ ' 2 = S T@)el(m) elz) + '@ )e@)” — F(z)eE)’
1(z) Z
CUCHRCEEN

(28) + [.’B, Ty ,Z) , """ y&a,y xn](@(x))z ’

- X + B Lot
/) Ew%nw—m

+ e, 2, 2, o, 2, Sll@)
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where the X, are known functions of x, , which depend neither on f(z,)

nor f'{z,). :

9. If this formula is integrated over the interval —k to -+h, we obtain

[ =3 age + B
(29) O
+ f_.‘ [t: h,h, Tt Ly t,](rp(}l)z\dt,
&

if the variable ¢ is again intreduced. Now the abscissa valupg é’,’ can be
80 arranged that all the n + 1 weights B, = 0, that therefglfe”"

_ 1 +h (¢(t))2 - ’ M:\ '\
&0 B =iy L a5 =80

This gives n equations for the unknown ¢, . :',\\’
If then the values N e

o) o O o)
) = ') (- weeh (- B

are chosen successively for f(f) im aquation (29), it can be seen that the
weights 4, are determined exacily by the formuls used above. Then
oM/ (t — 1)’ (1) is zero fof all » — 1 values, &y, 2, ==, la,y different
from £, , while for 1, it is efie) H this is substituted in the integral formula,
we get O ’

Vo : N } +h ‘P(t)
31) 2O g 4
'\’"' - {t - tr)‘”’(‘r)
The i d}r term is obviously zero, since this is a case of an integral

functiom’&fs (n — 1)st degree, whose divided differences from the nth on

are zeros

. Ja addition, if we set f() = @(Ogai(8), where gaa()) is a completely
\Qﬂ}itrsry rational integral function, then

+h
@) - [ g at=o,
since the 2n th divided difference of the function p(:c)_g._l(x) (en’t,ering ix.ato
the remainder term), which is of (2n — 1)st degree, 1s zero. This equam?n
contains the conditions B, = 0, given above, 2s a special case. In partic-
uiar, the equations (30) are satisfied i
]
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[Fewa=o, [ wwi-o
(33) N o
f_h Py dt =0 - - f_k " o(8) dt = 0.

Thereupon we have n equations, from which we can determine the n abscissn
values. -
N

10. The left sides of these equations are nothing else than themoments
from the zeroth to the (n — 1)st order, of the function g £ and these
moments can be transformed by means of the Jacobi formuia (1419}
Ifweseta = —hb=Fhzxz=tand {=01in th1s fOrmula, we cbtain

from our n equations: 444
‘.,\\'

+h
[ewar =o,
-k \
,, oD
+ wa :
— td “}‘ 2=
v [, eoanf [ wwar=o

(—ny fkwtc) att2=n [ [ i

ny

w’\ ’ +2-1f_:h f_‘ﬁ f_lgn(t)dta — 0.

If the value of. tche first is substituted in the second, the values of the first
two in the tthd ete., we obtain the following, in place of the above n
mtegrals,

'\f wodi=0, [ [ wat =0,
(3{5)

Y e R

If we now imtroduce the following function of 2nth degree:

|7 o0 a

I

+h
(34) f_ \ Folf) di

i ¥ 3
(36) s0=[ [ [ aar
then this function has the property that it is zero, as well ag its first #
derivatives, for ¢ = —h. This is self evident, since the upper and lower

limits on the integral are then the same. It is also true for ¢ = +h, a8
;]
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follows from the n equations (35). But its nth derivative is @(t). The
particular rational integral function of 2nth degree which has the pre-

seribed Toots is

{87) & = ¢ - B,

Therefore, we have

e — Y )
e N

Forh = 1 and ¢ = 1/2°n! this function is known as the Legendr&})oly-

nomial or spherical function of nth order.® It is customary to deteriine

the constant so that the coefficient of the highest power is I Therefore
we must have "G

(38) ol = C

39 o = SR EC=RY O

If this function is set equal to zero and the ngo\‘ts’ of this egquation are
chosen as function values for the integration.formula, then the eondition
is satisfied that all B, = 0. There results t,-hé; gquation

+h _ i = _L(ij__.—
f_ L J@de= 305 f_h“ G )" (8) «
@ N

NS

Fhy
PR Tt b, b GO dE
LAV
P

11, 1t may easily b;kéeén that all roofs of the equation »(f) = 0 are
rea! and must Jie between —& and k. The cquation ®(f) = 0 has 2n real
roots, namely, an @doid root at +A and an n-fold root at —h. By Rolle’s
theorem therefore) the derivative ¢'(f) will have a real root in the interval
—h to 4-h,sad in addition, an (n — 1)-fold root at the values +h and
—h If tiabfi)' is formed and Rolie’s theorem is used on both subintervals,
from —or k to the root of @'(f), then it follows that the rational integral
funetion of degree 2n — 2, @"(£), must have two real roots in the interval
“2hto +h, in addition to an (n — 2)-fold root at —h and +#4. If we con-

iftue step by step in this manner, we see finally that () = " (1) can
have no roots at the limits of the integral, but that it has n real roots in
the interval —Fh to -+h-

Let us caleulate the reots and the corresponding weights, for
example, in the case n = 3. This gives

3 3
el) = g—i% @ -y =F-ghi=0
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This gives the three abscissa values, fo = 0, tu, = +A(15)Y/5.
From these the coefficients may be caleulated by (31):

_ e = @/, i[‘_s 3 z]”_ 4
Ao = L —a/mn Y= ol s, T e
{40a}
B Rz (3/5)”2?&1 _ _5- [ta (3)1/s ts]u 3 5
4 = ﬁ samn M =waels ~\s Ml =

The formula consequently becomes « t\,’
:.~\\ o
" 2 : "
L Jz) dz = E[S_f(ﬂ) + 5[;(_5 (%511?;{)
e
+ (4589 ||+ 2

m\/
By similar calculations, the followiqg\@uee are found:

{40b)

X
n=1 HL=20 \Y
s W
*a3
Y ®
Anzzh, v:s."
P N

3

2 4, = 3057735027k,

T = =
Q
AGy= h,
.\\\¢
n=@ &L=0, tar = F0.77459667k,
N 8
~0 & 5
i"\x:\ Ao—*gh, A*lzgh,
’\\w
S " tay = £0.33998104h, f., = £0.861136314,
i..\: .
Q” A . = 0.65214515h, A., = 0.34785484%,
n=>5 =0, tuy = 0.53846031k,
foz = -£0.90817985h.
128
Ao = por by AL, = 0.47862867h,

A .y = 0.23692689%.
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12. The remainder term

+h

(4]-) R"mj-_h [titlstl)tsrt'_‘il"':tn:in](¢(£))adt

can be transformed further. Since [¢({)]® cannot be negative, the mean
value theorem of integral caleulus can be applied {o this integral. If we
designate by r an intermediate value of the 2nth difference in the intewal\
—h to +k, we have

+A . o \:\
@ Ro=lnt, bbb, o6t [ Gerdn SN
The integral ) N
+h 2 +h 2 " '# Y
- s . (mY & — B < By at
@ = [ s -], S O
ean be transformed by repeated integration byx:fﬁn’bs (cf. 27.9), so that

4

we finally obtain as the remainder term ~

_ (%}Enq-l gn) !)4 ; ¢ ~ \, B t
(44) Rn - 271 + 1 ((2?1)!)2 [T! tl s~ "1".: t@ b tﬂ T ! t,. ¥ u]-
If the function to be integrated has fagéﬁth derivative, and i.f this is con-
tinuous, then we can express the.2nth divided difference by it and obtain
the usual form of the remaindenterm

O™ (@Y oy

w B+ 1 @y

\

where —kh £ 7 =/ In the formulas given above therefore, we have the
following remainderterms:

” : h!: h’?
RO i), R iz 10, = g O,
{45a) . : . .
_ b _ aoig=y
O R=ggegs /@, Ro= imrmme0 ] O

\ )

13, Bortliewitz® has investigated the usefulness of formu‘:as with equi-
distant ordinates, particularly those which do not a.ppro:‘umatn'a the in-
terval with a single eurve, but which use several curves over various s?b-
intervals. He worked with formulas such as we have used in the preceding
articles. This included the integration of empirical functions, such as the
determination of the mean life expectancy, from morta_]ity_ tables, for the
population of Beslin in the years 1800-1800. Bortkiewitz shows that
formulas with negative weights {as occur in the MacLaurin formula for
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n = 7) are to be avoided, and that the accuracy criteria as they were
developed here sometimes fail. The reason.for this is that the chief as-
sumption—that the divided differences of a particular order become
small throughout the interval, i.e., that the funetion may be approximated
by 2 rational integral function of corresponding order—is not necessarily

valid.

14. The Gauss method, as well as that of Tschebyschef!, assumes that
the funetion values can be determined exactly for the ealculated Abscissa
values. Since in general computations are performed with,\ﬁﬁit.é decimal
fractions, this is usually not the case. The indicated accuracy of the
QGauss formula is therefore Hlusory. If the function goeibe infegrated is
developed in a series, then, in the formation of the approximation value
in the correction term, the factors of the nth $ef2rn — 1)si derivatives
become very small, but do not vanish. More Adetirate investigations have
been given in this case by Moors.™ . AL :

The formulas specified here are not ’e\only ones which have been
developed. There are formulas which gréseribe a portion of the abscissa
for which the function values are tg be determined, and so determine
the rest, including the collected waights, that the correction is made a
minimum, i.e., with differentiabls functions, the correction term contains
the mean value of a derivativé of as high an order as possible."’ For
example, Lobatto’® has developed formulas for the case in which the end
ordinates of the i.nteg;;n{ion interval are used.'® Development of all these
formulas would requite $00 much epace here.

Finslly, we obse}\% that the mean value methods ean also be extended
to functions of (several variables. In such a case it is natural that the
position of thefunction value to be chosen depends on the boundaries of
the regior}.l\‘,, )
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9
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9. Bortkiewiiz, Skandinavisk Aktuarietidskrift (1926}, p. 1.

10, Moors, Veleur approximative d'une intégrale définde (Paris, 19805).
11. Christofiel, Journal . Math. 55 (1858), p. 66.

12. Lobatto, Lessen over Integral-Rekening, (La Haye, 1852), Art. 207.
13. Radau, Jeurnal de math. (3) 6 (1880), p. 283.

14. Math. Bnzyklopadie 11 C 2, No. 13b and e,

17. The Planimeter."

1. Devices which serve to determine the value of a definite integral
mechanically by a tracing of the curve which represents the function to'be
integrated, are known as planimeters. They consist essentially ¢f'a rod,
the fracing arm, on one end of which is mounted the tracing.'pe!i which
follows the curve. The other end of this rod is moved by somb,mechanism
on & straight line or on a circular path, by means of 2 secénd rod, the pole
arm, which ean be turned about an endpoint, the pol¢, and which is joined
to the other end of the tracing arm by means of a Minge. In the first case
the apparatus is called alinear planimeter, in the ge’@a\x’d, a polar planimeter.

R&S

2. To develop the theory of the planime,te’y, we compute (according o
Rothe) the ares which is enclosed by the tracing arm. If we denote the
fength of the tracing arm by I, the coordiitates of the endpoint I, which is
the fracing point, by z, ¥, the eoordéﬁatcs of the other endpoint & by £, 9,
and the sngle between the tracingaim and the z axis by 6, then, by Fig. 53,
4 y “¢< ) o
SJ

..\".

R

\ ) Fia. 53

(1 x—g=1lcos® y—n=1Lsind

In this ease, for a given motion, we can regard x, g, & », 88 well as [ all
as funetion of one variable £. This variable may Wt.all be the time, because
hoth endpoints @ and F of the rod are moved rigidly on the two curves
QQ”, F'F", so that the entirc motion has only one degree of freedorin.
1¢ the initial position of the tracing arm @'F” is determined hy the para-
metric value ¢, the final position @F’ by &, then sectors S and 8 are
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swept out by the radius vectors r and p. The values r and p eorrespond
to the distances from the two endpoints of the tracing arm to the origin
of an arbitrarily chosen coordinate system. These
areas are measured by the integrals

3
i e
@ 25= [ G@dy -y,
f& ) .
b4 ;| _ o N
L 25 = [ @dn—adg
¥ | 1 - L o’\"\
The differential for the area of “the sector can
FIG. 54 N/

easily be read from Fig. 54: .\

28 = (¢ + da)ly + dy) — zy — WD~ dy-do
= (zdy — y d=). \N%

From the above equations, we now introdtﬁe:

x=§-+4 [ coséb, Q."}:—'—q+lsin8,

@

4) \
dr = dg - Isin 0 dg) " dy = dn + 1 cos 8 49,

from which we obtain, by m};[tfi;{licabion,
rdy — ydr = E“dnj;’ 1‘? dt 4+ PPleos” & + sin® 6) do
U cos 8 + nsin 6) do + Hcos 8dy — sin 94D,
50 that \i’
© 28";&'—:‘:2"54- e f:)da-p- 1‘[:'”(5 cos 8 + 7 sin 6) df
A/

~0 +1 f (cos 8 dn — sin 9 dg).

If £he ‘angles of the initial and final positions of the tracing arm with

(5)

) \r.éﬁ’pect ta the x axis are 8" and 87, the first integral becomes

I

F (7N r dé = 1 (8" — ¢).

To transform the latter integral, integration by parts is applied to the
parts of the preceding integral. We then get

for :
j:, (£ eos 8 - qain 6} d = [£sin § — 7 cos 6]}

(8) it .
+ f (cos 6 dy — sin 8 df).
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The first member of the right side must be transformed still further. If
the sngle which the radius vector p, from 0 to @, forme with the positive
direction of the 2 axis is denoted by ¢, then & = p cos ¢, 7 = p Sin ».
Therefore we get

[Esin 8 — # cos B]:." = plcos ¢ sin 8 — sin ¢ cos 8]0

o ~
[P sin (8 - 9’)1:' 3

Ij the distance from the tracing arm to the origin is denoted by, P,‘then
we ean infer from Fig. 55 that . \J

z’x’

(10) tsin § — 5 cos 8], = [pli.” = 9" — 'p 4

where the primes again indicate the initial and ﬁnal‘}osmons of the
tracing arm.
If all this is now substituied in the equation Qﬁ}\Yer 8, we have
\\
8= S+ (8”- 8 ANV
1 »Za

.'

Fia. 53

The final integral is also to be transformed further. From Fig. 55, in which
QQ, represents the path differential of the one endpoint @ of the tracing
arm, it may be dedueed thai
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dk = ds cos w, dn = ds 80 w.

By ﬁse of the relations introduced ia Fig. 55, the last integral becomes

f{cos o dy — sin 8 dE) = f(eos §8in w — sin § cosw) de

(12) .
= [sinto - e)ds=fsin7d3=]'dﬁ.
. RS
Now the | dh measures the displacement of the end point @'l the tracing
arm perpendicular to its direction. If this value is slsg,s:gbétituted in the

above equation, we obtain the general planimeter equat??o'n 3
5 1 1 N\
{13} 8=8+ 5 Blerr — 91 + 5 Wp'’ <o+ 1 i dh.
AN
3. Devices are mounted on the planin eter which measure the integral
fdh, ie., the displacement of the endpoint @ perpendicular to the diree-
tion of the tracing arm. The mechanism most frequently used for this
purpose is the ¢ntegrating wheel. This in a
s .y?h’eel with milted edges, which moves by
_vsliding in the direction of its axis, parallel to
“*the tracing arm. In the case of displacement
perpendicular to the tracing arm, and there-
4 £\ fore perpendicular to its axis on the drawing
Fic. 56 \\ plane, the wheel rolls. In all other displace-
O ments, it partly slides and partly rolls about
a djsplacemgn;ﬁ of the tracing arm perpendicular to its own direction. From
Fjg. 56 Wp\isge that in the displacement of the contact point of the wheel a
distangce As'in a direction which makes the angle v with the wheel axis, the
whe{Qtséli rolls a distance 3

A Ag, = Assiny = Au2pr,

Here Au is the fraction of one revolution through which the integrating
wheel, with radius p, turns during the course of the motion.

The number of complete revolutions of the integrating wheel is read
o.ff on & dial moved by an endless screw. The subdivisions of these revolu-
tlom.i are ‘read off the circumference of the wheel itself by means of &
vernier, divided into 100 parts. Readings may then be made to 171000
of a revolution.

If ABis a curve and v is the angle the wheel axis makes with the tangent
to the curve, then the number of revolutions turned in the tracing of the
contact point of the integrating wheel along this curve is
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1 : 1
14 — f f
(14) u =g ginvy ds = 5~ | dh,

if the wheel is placed at the end point @ of the tracing arm.

For technical reasons, this is usually not the case.
More frequently the integrating wheel is at some posi-
tion adjacent to the tracing arm, so that the axis parallel 1.,
to the tracing arm is at a distance d. Also, the plane of
the wheel perpendicular to the drawing plane euts the
tracing arm at a distance ¢ from the endpeint, 5o that .
the projection of the radius vector from @ to the contact 1!
point of the tracing arm forms the angle & |

Fach motion of the tracing arm may then be eonsid-
ered a5 composed of three partial motions (Fig. 57):

(s) Displacement of Q4 to Q'A’, a distance Ah pers N,/
pendicular to the tracing arm; rotation of the WlQel
through Awy = Ah/2mwp. K,

() Displacement of @A’ to @A™ n the d}:@eﬁion of the tracing arm;
o rotation of the wheel; P \d

(6} Rotation of the tracing srm about, @ from OUA” to QUA. Move-
ment of the contact point of the wheel on the circle R'R'" of radius
¢/eos 5 and of length ead/cos & ‘Si:uéé the whee} axis makes an angle
%0 4 5 with the direction of motion, the wheel turns through

F1a. 57

cA&“<sin(90+ 5 _ e .
(15) Ay = @x- _—_Ep_'x-_l = Zpr LY:R

The rotation of the ,wlieel is therefore independent of the distan'ce of the
wheel axis from thédtacing arm. The total rolling of the wheel is then

O _A([” )
(16) &é\f s + s = 5 [ an e )
i i i i lanimeter equation
1§ this-Value is substituted for [ dh in the go_aneral pl b
(&35,“\We get the ~quation for & planimeter with the integrating whee on
fic supporh

= : ’ Uowr ot
(r7) S=S+(%-—Ic)(9”—ﬂ')+§(p p") + 2lpmu.

4, The planimeter most widely used is Fhe polar p'I.animewr develc_:peld
by Amsler®, in which one end @ of the tracing arm A is moved ozi:h a cirele
by mesns of the polar arm P. The details of the p}anunete'r m:; ?:P 1—,}:;
Fig. 58 which reproduces the gso-called compensation planimeter.
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dt = ds cos w, dn = ds sin w.
By use of the relations introduced in Fig. 53, the last integral becomes

f(oosﬂdr,- — sin 8 dt) ———f(cos f# sin o — sin § cosw) ds

(12)
- fsm(m-— 6) ds = fs:inqrds¥\fdh.

Now the _l' dh mesdures the displacement of the end point, Qof the tracing
arm perpendicular to its direction. If this value is alsogubstituted in the
above equation, we obtain the general pluntmeter eguatzo*k

a3  S=8+1 zﬂ(eff—e')+§1@"-ﬁ’)+z[_ dh.

\/

3. Devices are mounted on the plant tér which measure the mtegral
Jdh, ie., the displacement of the end;i;un%t @ perpendieular to the direc-
tion of the tracing arm. The mechapism most frequently used for this

purhasé is the integraiing wheel. This is &

wheel with milled edges, which moves by
2 ;,hdmg in the direction of ifs axis, parallel to
* the tracing arm. In the ease of displacement

perpendicular to the tracing arm, and there-

fore perpendicular to its axis on the drawing

plane, the wheel rolls. In all other displace-

ments, it partly slides and partly rells about
a dlsplacemeni of the tracing arm perpendicular to its own direction. From
Fig. 56 we,8e that in the displaccment of the contact point of the wheel a
distange\ds'in a direction which makes the angle v with the wheel axis, the
wheabd?self rolls a distance 3

T,

S As, = Assiny = Au2p1r"

NS
“Here Au is the fraction of onc revolution through which the integrating

wheel, with radius p, turns during the course of the motion.

The number of complete revelutions of the integrating wheel is read
off on a dial moved by an endless serew. The subdivisions of these revolu-
tions arc read off the circumference of the wheel itsclf by means of &
vernier, divided into 100 parts. Readings may then be made to 1/1000
of 2 revolution.

If ABis & curve and v is the angle the whee! axis makes with the tangent
to the curve, then the number of revolutions turned in the tracing of the
contact point of the integrating wheel along this eurve is
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(14) u=$fsin'yds=—%-ﬂfdh,

if the wheel is placed at the end point § of the {racing arm.

¥or technical reasons, this is usually not the case.
More frequently the integrating wheel is at some posi-
tion adjacent to the tracing arm, so that the axis parallel |
{o the tracing arm is at & distance d. Also, the planc of ¢
the wheel perpendicular to the drawing plane cuts the
tracing arm at a distance ¢ from the endpoint, so that J
the projection of the radius vector from @ to the contact . |7
point of the tracing arm forms the angle &

Each motion of the tracing arm may then be consid- .
ered as composed of three pertial motions (Fig. 57): ¢

(a) Displacement of Q4 to @'A’, & distance Ah pér-)
pendicular to the trasing arm; rotation of the wheel
through Aw, = Ak/2me. 7\

(o) Displacement of @'A’ to QA" in the.direction of the tracing arm;
no retation of the wheel; P\4

{¢) Rotation of the tracing arm about & from QA" to QA Move-
ment of the contact point of the wheel on the circle R'R™ of radius
¢c/eos 5 and of length eAé/cos s.o8ince the wheel axis makes an angle
90 -+ & with the direction of motioh, the wheel turns through

Fia. 57

o

_ cAB s (90 + 8 _ & 4
L) AUy = @ - Tom Spr 8.

The rotation of thelwheel is therefore independent of the distance of the
wheel axis fromi{he tracing arm. The total rolling of the wheel is then

(N oo e
o\ * _1_ f1 F
{18) (w= duy + duz = (f dh + (8" — e)).
.~'§ .’,, 2pm \J,

K J‘{lﬁ"vahe is substituted for § dh in the general planime?er ecpuation
~(18), we get the oguation for o planimeter with the mtegratmg wheel on
static support:

= d I rr F
an S=S+(l§— )(a"—e’)+§(p — p') + 2lpru.

4. The planimeter most widely used is ’Phe polar p_lanimter develcfpeld
by Amsler?, in which one end @ of the tracing arm 4 I8 moved 0:11 a cirele
by means of the polar arm P. The details of the p’ls,mmem-r are i)wn t,th;
TFig. 58 which reproduces the so-called compensation planimeter. 1o



196 PRACTICAL ANALYSIS

the connection between the tracing arm and the polar arm is made by a
ball joint, which can be dismantled. In this way the error of the hinge
inclination, ie., the error which results from the fact that the joint i
not perpendicular to the plane of the drawing, is avoided. Besides, the

Fio. 58 /007

planimeter ¢an be dismantled at the junét-i}n of the rod P and the tracing
pen f, in the ball joint. We can then{miove P through to the other side,
and so carry out the tracing of thewaiea to be measured with two different
positions of the planimeter. If weform the mean of the two measurements
which are then obtained, welréduce a second error of the instrument,
namely, that the axis of the iftegrating wheel is not paraliel to the tracing
arm.* C
To measure small siﬁjfa.ces with a planimeter, the pole is so set that it

2

O o

V) _ F1e. 59

is outside of the surface to be measured. The shaded area in Fig. 59 is
traced over by the radius vector in one direction and then in the other,
in girdling the area F with the tracing point. The area is then canceled
out. Furthermore, in a complete cirenit of the area, the planimeter is
brought back to its initial position. Consequently ¢ = # and p"’ = ¢
and the radius vector ©Q, here the pole arm, sweeps over the same sector
in 31 positive and negative sense, so that § = 0. The planimeter equation
is then
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(18) F = 2pr-1-u

The position of the measuring wheel is then immaterial, provided that
its axis is parallel to the fracing arm.

The factor 2xpl with which the number of revolutions is to be multi-
plied, is known as the planimeter constani. The simplest way of deter-
mining this constant is the following. A moderately sized area of known
magnitude—say a square 10 cm. on a side——is traversed, and the area of
this surface is divided by the number of furns of the wheel. The resultdnt
value is the planimeter constant. We form the mean value of this gquantity
from several circuits in the direction in which we intend to pexforti/the
gircuit in the actual measurement. The constant is so chosen\for most
polar planimeters that one complete revolution of the integrating wheel
corresponds to about 1 square meter. Before the final pdehsurement, the
surface whose area is to be messured is t.ra.vemed.‘i‘n:\an approximate

O \ / Fis. 60
(N .
fashion, i{i"(}r‘der to ascertain whether the wheel stays on the paper. In
the cirgliit) the tracing point is moved, as far as possible, s0 that it is
viewédiin the direction of motion, in order to avoid any pasmbl‘e parallax.
...ﬂéhhmbm of revolutions is equal to the difference of the readings be'fove
and after the cireuit. Tracing with the aid of a rule along & s_tranght
portion of the curve is to be avoided, since the errors in free tracing, re-
sulting from back and forth oscillations, cancel each other. ot
For large areas, the pole is placed within the area. Then Eor a }t:cmpLe e
cirenit, P’ = P’ again, but here, o — @ = 2_1r, 8§ =1L W Igre i
the length of the polar arm. In this case the planimeter equation becomes

{19 F = (12 + P — 2oy + 27p-iv

Greater nceuracy is achieved with planimeters in which the support,
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on which the integrating wheel rolls, is also moved. Lhis ma,y be accom-
lished by a rolling on a polar disk, as in the disk plantmeter.® This plani-
meter uses the so-called Gonella integrating mechanism (1824), A wheel
¢ rolls on the polar disk P of radius B. This polar disk has milled edges.
The axis of ¢, perpendicular to the drawing plane, is moved by the polar
arm 0, and is rigidly connected to the disk S. The mtegratmg wheel B
rests on this disk at a distance d from the axis, and is borne by an am
QR perpendicular to the tracing arm [, so that its plane passes €actly
through the endpoint  of the tracing arm. Thereforec = 0.

1f now the polar arm is rotated through Ax, the disk, as a’csnsequenue
of the rolling of € on the polar plane, rotates through A= (R/n)ay,
and the contact point of the integrating wheel is moved-through d(ay) =
(Rd/r)Ax. Tf the angle between the plane of the wheeh and d is denoted
by ¢, then the measuring wheel rotates through .\

(20)  2pmhu = R—fsin phx = %Sin'r-dgc’%‘g (L — (r + R)) sin v-&x,
O

as may be deduced from Fig. 60. Naw)L(Ax) is the path traversed by

the point @ in this motion, and (Lay) sin v is the component of this

®

¢ Fro. 61

mqtipn\perpend.icular to the tracing arm, which we have denoted by Ak
Therefore we have

\ s

@1)  2miu = 3(1 — ER)LAx sin y = g (1 _ ﬂ)m,

whieh, upon integration, is
29 =._Ri( _ ﬁ_R)
(22) Zpmu = E{1 - T4 f A,

If we introduce this in the general planimeter equation and observe that
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for the choice of the pole outside of the surface to be measured, P = P’
¢ =¢,8 =0, and '

. 20l 1-2par
@ F=Ri-crB)"

for & complete circuit, of the closed surface, If the pole were placed inside,
we would still get (L* + ). Here also the planimeter constant is de-
termined by & circuit of a surface of known area. The dimensions of thes
instrument are so chosen that one complete revolution of the wheel corfes
sponds to about 5-20 cm.?, according to the length I of the tracing(amh,
which is adjustable. o\

Such planimeters have also been constructed as linear planimeters. The
whole instrument is then moved on two wheels in the dirg;ctii:iﬁ of the =
axis, Then @ moves on a parallel to the x axis, and the ro’@cibn of the disk
is proportionsl to the displacement in the direction of \{ha x axis.

6. Another integrating device is the spherical wh}ez plandimeter, which is
usually construeted as a linear planimeter. Here, the disk is replaced by &
spherical cap K of radius p, and the integr:;tihg wheel is replaced by a
eylinder of radius p, , which is pressed against the sphericel cap by means
of a spring. The whole apparatus trévels on rollers of radius B in the

N

TF1a. 62

direction of the x axis by means of these rollers and a small milled w}:}eel
of radius r. In a movement of the apparatus & distance Ar, the s.phen(@l
cap is turned through an angie &x/r = Ag- 1f the notation of Fig. 62 1s
used, the rotation u of the eylinder is given by,
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- i Ax AR
{24) DpgrAu = pysiny-Ap = &S_I%_T_._ — plT:

since Az sin v is the displacement of the tracing arm F@ perpendieular
to its axis. Therefore

. ‘lf
_ f1
(28) ¥ = LI j:. dh,
and if this is substituted in the planimeter equation, we get, for\ 4 com-
plete eireuit of the surface, O\
Zparrl >
{(26) F = %wuu. g >
1 7%}

The planimeter constant of the spherical wheel f;lanimeter is just about
8s large as that of the disk planimeter. Eacl’ ﬁnear planimeter has the
advantage that surfaces of arbitrary length\¢ah be measured; naturally,
the breadth of the curve is limited by the\eéngth of the tracing am. A
especially simple planimeter is the_type'known as the Pryiz or haichet
planimeter.® AN

Fiz. 63

7. We shall now give a few szamples of the application of planimeters.

a In orometry the problem is to find the mean height of a certain
boufuled region. That is, we seek the volumes of irregulatly bounded
bo_dles. The shapes of these bodies are given by contour lines. If # is the
height above the zero level, and g(z) is the area of the surface bounded
by the contour line at the height z, then the mean height is

k=§(%5_[;y(z)¢z.
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The individual values of the funefion g{z) are then to be found by use of
the planimeter. If the points so obtained are plotted as a funetion of 2,
the end points are connected by a smooth curve, and the ares is taken
with & planimeter, the value of the integral is obtained.

Another example of this type is the following: a scale is to be prepared
for an artificisl Jake, for which shore contours are given, from which
the volume of waher contained behind the dam can be read off as a funetion A
of the water level.”

b. The static moment® and the center of mass of a surface ean be f;)und
by graphing the data and taking the area of the new surface. The st.atlc
moment about the y axis is

~ '.
NN
S D

1 1
) §o= [wwar =3 [uaeh) = 5 [ v (€
where #° = £ The curve is drawn (using a quadratic scale £ = z” on the

2 axis) so that the ordinate belonging o = is chanﬁed to £ This can be
done without construetion of the scale. We can\determme £ = 2 with

'\
P

S o SO
+ 8 Y
N
7}
\S
» lc”f —

J'ia. 64

s slide mle and enter the value of y at & Then the graphing can be 2;‘: n:i
out in 2 comparatively short time. By use of the planimeter on the
sultant surface, we obtain 28, . In the same Way, we obtain

S,zfmydy=§f$d(yz)=§fxd"'
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“For the symmetrical rail ¢ross section in the accompanying Fiz, 64,
we get F = 7.775 cm.” for the surface area. The drawing is not ena
geale » = %, but follows the scale 3 = y°/5. We get 8.2 em.” for the
surface area of the dotted figure, so thai the static moment about
the lower edge of the cross section is S, = 5 X 8.2/2em.?

Now the coordinates of the center of rnass are

O\
f xy dz f yEdy
(28) z, = %=7; y.=%’= <\
. "\ ¢
f yde z dy)
:‘n"
In the above fgure, the center of mass naturztllyjies’on the axis of
symmetry, and is \.‘..\\"

Fie. 85

distant from the lower edge.
¢. The azial moment of inertia sbout the ¥ axis is
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cal rail cross section in the accompanying Fig. 64,

1.7 for the surface area. The drawing is not on 5
lows the scale v = ¥°/5. We get 8.2 em.” for the

dotted figure, so that the static moment about
cross section is S, = 5 X 8.2/2 ¢m.’

85 of the center of mass are

N\
f zy dx S f yr dy
= . W, = = = “f\“,\'
[va N
y dw z'dy
z":‘s
e eenter of mass natur;l;l}y\lies on the axis of
W
20,5 em’® \
T 7975 em” ,_7,:\\2'35 tm
/""'ff:""-;}
!"' ) R .' “: h

about, the ¥ axis is
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(29) T==fy$2d$='1§fydxa=%fydg_

We must therefore draw the curve to the scale § = £°/3, and measure

the area with a planimeter. Just as with the static moment, a change in
seale is usually necessary.

203

For example, the scale g = 3°/3.125 is chosen in Fig. 65, in whi
the moment of inertis about an axis parallel to the x axis, through

the center of mass, iz determined. The value obtained with a(plani-
meter is then to be multiplied by 3.125. We get

7'\

Ny

T, = fxy*d = % f ody = 332 ¢ 18,98 =.10.75 em".

3 )
~\
d. The product of tnertia of a surface is \%

Y | SO S YA

Here both the coordinates must be tragsférriled to pew scales. )
e. The moment of inertic about aﬂvamls“perpendicular o the surface is

o 1= [[ o [[ride =k [rtde = [Ra

If we write ©* = R, w iza.; regard the latter integral as a surface and,
after drawing, determine T, with the planimeter. ) )
f. Let us give the‘corresponding formitlas for solids of rotation. If zis
the axis of rotation/ the volume is
» ",\“ za T
@ \O° v Jar=x [ nda
N\ i

The I;'e[-,essaya.ry drawing of the meridian curve s =y (cf 1491
P

<\ } “The staiic moment with respect to the yz plane is

o

___%J’:"%%D:gff’ﬂd&'

(33)

A drawing on two new scales 7 = i E = z° ig necessary.-
The moment of inertia about the axis of rotation
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e [ [ [ v

T3 4+ Ey
= % ?{de=§f 7 dz.

34

The ordinate is to be drawn 7 = y* with an unchanged absc;ssa Then
the above quantities are determined with the planimeter.

g. Rothe gives further examples, e.g., the determination of‘the mean
light intensity of & hght souree” and the determination of tJ{e probability

of hitting a target.”
The detem:lma.tlon of the static moment and the" a«ml moment of
inertia of & surface can a.lso be carried out mthou{ redramng, by means

of & moment planimeter.™

NOTES \
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CHAPTER FOUR
PRACTICAL EQUATION THEORY

18. Approximate Calculation of the Roots of any Equation.

1, There are three general methods for the determination of the roots
of sny function with one variable, or of several functions with the corred™
sponding number of variables: the method of false position, the method
of iteration, and the Newton method of approximation. ¢\

With the method of false position, linear interpolation is used Tor the
determination of the roots. 1f we draw the graph of the funi;gién y =
f(z), the roots of which we are seeking, the intersection of this curve with
the 7 axis gives the desired value of the root. If we now have two values
2 and %, , for which the function has opposite signs, WA\
and if the function is continuous between these '
values, then there must be at least one root, o be-" .;I
tween them. If f'(x) does not change sign\ihy he {
interval ¢, < % , then there must be only ©ne oot
there. TIf #'(z) does not vary too rapidly im\the inter-
val, then the curve can be approximated\by a straight
line through the points x, , 3, and Ty, B, in exactly
the sarme way 5s was used with finetr interpolation in Fic. 66
tables. This straight line has{the equation

+8 3
ﬂ\} h = gi — 4 @ — =)

X — T

The x intercept ﬁ'i;}li;:h gives a better approximation of tkrle desired rf}ot
than was Obtgi'ﬁea with z, or T, , is obtained for ¥ = 0. The correction
&% = -\:3:1 ‘o be added to z, is then

LN\

[ _ rn — xy L.
03t T
\f'.f "(z) does not change its sign in the observed interval, t.l}en the m;lw
. approximation value lies on the concave gide of the curve. Ii for ;; e
value =z, so obtained, f(z.) has the same sign as f(z,), then a lzirger v t;e
T, is considered, which lies within the old interval, so thfxt @) ha;1 e
opposite sign to f(ws). I flzd) and f(zz) have ?pposute signs, we C 3032
%, < T s0 that f{z;) and f{¥,) have oppesite signs. We then proceed 8
above and obtain the new correction :

206
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B — &
gz“"yz

Az, = — Y2 -

This process is continued. The narrower the interval and the smaller the
variation of f’(z), the betier the curve is approximated by a straight line,
and so much more rapidly does the process converge. In general, the
method of false position necessitates a great deal of caleulating, and is
only practical if the funetions concerned are tabulated.” A

2. Example (from Rothe). For high potent{a.l con-

Io duction through walls, tubular insulators & used

N ; ; :
/ I / which are covered with metal on the jmner and outer
,/A‘ -' % surfaces. The ratio ¢ of the line voltage to the maxi-
—R mum admissible field strength (bfu\éakdown potential)
Fra. 67 is given by ¢ = r In R/r \Deutscher Kalender f.
Elektrotechniker 1917, T, pNJ0Y. What ratio must the
external diameter 2R have to the bore W@t‘h in order that the cross
section @ be a minimum? ¢*¢
If we set Bfr = z, then r = g/ln‘x'j?herefore
v=Q/7= B =) =AG" - D = ¢6" - D/fn o)’
must be a minimum. The ﬁnqt;ﬂé:ivative must then be zero:
yI/qz — i (222 ‘-"~:'l:)’= 2 _ 2($2 - l) _
- dx (,h'.’l x)’ (1‘{1 x)“ :c(ln x)s -
Neither z nor In a:,isiz\ero or infinite; therefore,

1
map(i-L)-0 o s-.

-Gy g )

Since ¢ ig“abulated, c.g., by Hayashi,® we use the second form and
calculsi,ze:a“few values first, in order to get a general picture,

) § ) TABLE I.
o z 1 1.5 ’ 2 2.5
— 1—(1r 23
T—e ! 0 —0.242 ' —0.117 ‘ 0.185

There must then be g root between 2 and 2.5.

+0.5
Ay = 0308 X 0117 = 0.194 = 0.2.

If we caleulate further we must, i i
L W ake, for z, = 2.2, and since f(z.) has
the same sign as f (), %, > 2,. We have
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TABLE IL
RS _ 1 1 {1z

x \ o \ i P € y

22 0.2065 0.7935 2.211123 \ —0.011123

2.26 (.1972 0.8028 2.231782 ] +0.018218
From this we obtain O\

0.05 _ O
. = Goagam X 00111 = 0.0189.

Therefore z = 2.219. m"\’\'

3. I we want to transform the method of false posilion to 106 egufm'o»:’w
with fwo variables', we must choose the represep’gﬁﬁt}n of the function in
seale form instead of a curve. The scale of ¢ ~c}xsri‘é-

sponds then $o the scale of z. To the interval gy’ — n b2
shere corresponds on this seale an intervalg,™— y=1n % @ ¥

#hich lies the origin of the scale. Thigvdivides the
length in the same ratio in which ogemust divide the
length Z, — 2, in order to get a bafter approximation for the root. If we
have to find the roots of two eqintions ¢(z, ¥) = 0; ¥(z, y) = 0 with two
unknowns, then we set ()

Fi:. 68

@ =) ¥ = ¥ v

plins for which
and map the x, ¥ & on an X, ¥ plane. If #q, ¥o re the values _
the functions are _ero, and if the two functions are regular in the neigh-

berhood of Ahése values, we can develop X, ¥ in powers of (& — To)s
(y — o) Jthese developments the constant texrms vanish, but the T!me::r
coefficients’ are different from zero. Therefore we gebt an apprcn;;n:h e
mapping of a small region in the vicinity of %o , ¥ , i WE break e
"d*‘;‘fﬂfﬂpment with the linear terms, i.e., if we set:

6 X =ais— o)+ b - ¥ = aE 0 T EET Yo)-

But this defines an affine mapping. Therefore three poinis p: , ips , ;pi ‘lff
the zy plane correspond to three points Py, Pa, Paof the XY p! atl;les:t 1-,h2
desired point p, now lies so near to the three points p., Pz, Pa e
quadrangle pop:D2ps is affine to the quadrangle OP,P.Ps - S:Ecet;"o .
affine mapping, the length ratios remain invs_tr}a.nt, we .draw : 1;o.e]:l T e
P.Q, and P,{, in the triangle P,P.P; and divide the sides of e g
P1pips 8t ¢ and ¢, 80 that

N\
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pg _ PR pts_ P
Psth P:gy’ Palda P
The intersection of the transversals p.g: and p.g, then gives a better
approximation for the desired root. The assumption is that the pointe
P, , Ta , Pa 2Te Dot collinear.

Occasionally it can be advantageous for caleulation of the complex
roots of an equation to break up the equation into its real and imaginiry
parts, and caleulate the roots of these two equations for the two waridbles.
In place of the pair of linear equations above, we get the mzj.pjh'r@ eqia-
tion of the region about the root, according to well-lcnomi.%heorems of
function theory:® N
X = ale — @) £ 0@ — %)

@ Q
Y = bz —%) + oy — %)y

so that instead of $he affine relation, we gef a
rotation throygh'an angle ¢ and a scale change
u, where )"

(8) @‘-‘o% \d arc tg %, p =+ Py

"W;:: therefore have a conformal mapping {(cf.
< 21.9}.

s
Fro. 66 LA N 4. Example: For the determination of
) G: the expenent in the formula for longitud-
inal osciflations of an airplane at ¥ = 30 m/sec. Deimler® gets the
equation™\ '
PR A+ 207 + 44007 4 LISN + 0.7 = 0.
I\fQKe' set A = z -+ 4y, then we get, by separation of the real and
wJUnaginary parts
\mf;\" X =2 — 6% + ¢ + 2" — 6y’ + 4.490° — 3)
\ .
4 1.182 -+ 0.7,
Y = g2 — 4ay® + 62° — 2° + 8.98z + 1.18).
From this we obtain the following approximation values:
n=-09 - =17 X = -059, ¥, = —0.58,

= =09, y=18  X,= 402, Y, = +0.41,

=18, X,= 4108, Y,= —038

Ta

]
i
bt
x
¥
[
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These values are plotted in Fig. 70. The corresponding angle trans-
verzals are drawn in the XY plane and mapped into the zy plane.

From this we read as a new approximation z, = —0.893, y, = 1.769.

*1

P
'y oy
O\
) Pa A NK
-1 A\ )
Fra. 70 RS 0

1f we substitute these values, we get X, = 003, v, = —0.06 If

this accuracy is not sufficient, we can coniinUe in a similar manner.

Instead of caleulating three points, sinee wé are desling with a con-
formal mapping, it is possible to wotkvwith two poinis PP, and
construct AP, P00 = Apypsp we shall do in 21.10.

5. If the method of iteration is ui’;f)e"applied to the solution of an equa-
tion, then it is assumed that the ehustion may be put in the form

(6) Nz = e,

where ¢(z) i8 a iunc_ti(}\af + which ehanges slowly in the region of the
root z, . By iteration’we understand the following: if we have found an
spproximabe vafiu:é #, for the root of the equation, then we can approxl-
mate o{z,) =i “ol%,) because of the small variation of oz}, and .

M o 2 = oz

Wlll\be % better approximation of the root. With x, we form x; = (%)
snd. continue until the root is found with sufficient accuracy. If in the

ethod of false position mentioned in Sec. 1 we get the value 1y-mg on
the convex side of the curve, say %, , then we can put the equation (0
in the form

P W T ﬂ__—_xﬂz_}
T—y g— i@
i.e;, we can consider the method of false position as an itm:ation process.
.To provide us with a survey of this type of approximafion, we form
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(&) z, — 15 = o{we) — elz)

by subtraction of the two equations above. If we are working with real
values of z, then there are two possibilities for the approximation. First,
the approximation for the root can be approached from one side. Then
the approximation values form a monotonic inereasing or decreasing
sequence. This is the case if «(z) increases in the neighborhood of the
root with increasing z. For then, if z, > 1, ¢(@) > o{z1), %0 = & 0,
i.e., ¥, > , lies on the same side of 2, a5 =, , and indeed on.thetside of
the smaller z in this ease. If, on the other hand, #{(z) deqreéseﬁ with in-
creasing # in the neighborhood of z, then, if zo > z,, elfo)) < elx), i,
%o — ; <0 OF Ty < ¥, , T; lies on the opposite side of the'root from z, .
To make the convergence of the process completpiyfclear to us, we form,

from equations (6) and (7): A\
©) ' L — 2y = M\(m — ).
r — xl'. A

For continuous functions-—and we ‘Génsider only such functions here—
the difference quotient is always smaller than the maximum value of the
derivative in the interval. If thetabsolute value of this derivative in the
observed interval has the maximym value m, then |z — 2| S mjz — @,
and further | — & | < mg — x| £ w° | — =z, |. In general

(10) ix— B Em 2 —

Therefore the 'xt@atfion process converges if, in the interval used for
approximation;,thé maximum absolute value of the derivative of ¢(z) is
smaller than I\Indeed, the smaller this value, the more rapid ig the con-
vergence. It is to be observed with this deriva-
tive that nothing has been assumed concerning
the real nature of the roots, the approximation
value, or the coefficients entering into them.
The method of iteration therefore can be ap-
plied to the caleulation of complex roots of such
complex funetions. '

A particular advantage of the iteration pro-
cess is that an occasional error of ealculation
) does not ruin the work, provided that the erro-
neously comptited value lies within the region of convergence. Under such
cireumstances, it adds only to the amount of work, so that in spite of
occasional errors in caleulation, we arrive at the desired final value.”

Fi1g. 71

6. Ezample: An inelastic chain is to be stretched between two points
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st the same altitude, d = 50 m. apart. The chain sags b = § m. at
the center. How long is the chain?

The equation of the chain curve is

y = a cosh x/g, its length

472 1/2 a2
:=2f (1+sinh=3) d:c-=2af mshid(f):%sinh—@—.
@ a 2 @ A 2a

For the determination of the parameter, we have the equation

a+h=acosh2ia . C
_ 1 i z _];- ('i)& _L(d)BQ"‘ \:.."
*"[1+§(2a) +21\20) + 720 \2Ah

R W
ma _1(af, L(8) 4 & (L3
d 2a 2\2a 24 \2a 720 ga’
or, if we set 4/(2a) = 2, D"

2h _ 1'2 __1_ 3 J—;_:’ -
277" Tt Tt
If we divide by z and rearrange termg,’ we have
4h 2 '.’V_éi___”_=
2= +°7 " 123%60 A

From this, z can be comp@ied by the method of iteration, if the
sagEing is small. As a ﬁ{Sﬁ'approximation, we take
ja\

b zl.;_1_%=0.4:.

From this it foigws that
D% = 0.4 — 0.0053 — 0.0001 = 0.3046.
Asa e&\)ﬁﬁ: approximation, we find

R\ 2, = 0.30485.

'“\;E;i}ié the value of ¢'(z) = —0.040 is accurate to three decima.ls-j, and
‘he error of the first approximation ean be efitlmated at a maxmim
of 0.006 from the above data, the error of z; 18

2o — 23 < Mz — 7)) = 0.04% % 0.006 = £.0000096,

ie., the value of z, is accurate to aboub & ynit in the fifth decimal
place. The next approximation value

2, = 0.304843

is accurate to the sixth place. From this we may calculate
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and obtain the value of the length of the chain:
1 = 126,632 sinh (0.394843) =~ 51.18 m.

Other problems on the catenary can be solved in similar fashion.
Q"

7. The process of iteration can be extended to several equalisns with
several unimowns, provided that these can be put in mutalﬂe‘form For
general observations, we limit ourselves to two equatiofiywith two un- -
knowns. The treatment of several egquations with several unknowns tsa
be inferred immediately. Both equations must be puf in the form

(11) =9y, ¥= rﬁ(z??)

if we want to use the iteration process, thre  and ¥ vary only slightly
in the neighborhood of the desired root./1f a first approximation ; ,
hag been found in some way, perhapg’ g}aphlca.ﬂy, better approximations
can be obtained in the same way as{ zkbove

(12) 2 = o, yb;? Yz = (21, %)

From these two approxlmatwns, a third can be obtained, etc.
To obtain information or the convergence of the process, we subtract

(11) from (12): \‘

120 7 — o 1) e, 1) Y= = e Y) — L)
or, if we rearraqge the right hand side of the first equation,

3\"" x ‘p(x’ y) ’p(xl 1 y) (z —_ x)
I — I
(13),\\“
R i. + ez , ¥) ~ ez Lﬂ (.y _ !4’1)
'\ y - y
“If, instead of the difference quot:ents we insert the maxima of the ahsolute

values of the partial derivatives | 5, | and | &, | for the region eonsidered,
we obtain

(14) x—leéEéwt-Jr—xxI+[§,i-ly—an,
and, in the same way,

(14s) v —wlSvlle—o|+ by —nl
From this it follows, by addition, that '
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(5) lz“h‘i"'[y_yzié(l‘!_hl_l-l\_bzi)!'T"_"xli
1
+da )l Fiwd-ly—unl

If we denote the maximum value of these four derivatives in the observed
region by m/2, we get

58 lz—am|+ly—ml=mlz—anl+lyv—nh

snd, in general, as in the case of one unknown, a

{16} lz —z, 0+ |y — Yo | <sm Mz — o+ ly — % D\'\\

The method is therefore certainly convergent if the partial glefivé,tives of
the functions on the right side of the equations are all less shat 1/1, where
1 is the number of unknowns entering into the equatiéns’ This can be
seen by an extension of the above considerations fe\lequations with I
unknowns. Tf we apply this process to linear equajions, we obtain, es-

sentially, the method of Seidel® applied to thésolution of the normal
equations in the method of lenst squares. ~N\

S 3
AN

8. Ezample: An example in Whi‘c.h“ the above condition is not
completely fulfilled, while thre brocess nevertheless CONVErges,
although slowly, is taken fromia work by Ritz® on the Chladni figures
of a square plate. - . )

For the six coeﬂicig@‘s A, to A, there are homqgeneous‘ linear
equations in which jthe parameter A appears; equations .wh%ch are
independent, of eat\zh\)ther if the determinant is zero. This gives an
equation of si:gtﬁ erder for the evaluation of the frequency X, which
has the form, of the secular equation. These equations are:

0..:2(;1“3.95 —~ )4, — 32084, -+ 18.60 A.
§\ 1. 32.08 A, — 37.20 A, + 18.60 As
N0 = — 16.04 A, 4+ (4118 — N 4, — 1200 4,
Ny — 133.6 A, + 166.80 A, 4 140 A,
V 0 = + 18.60 Aq _ 2400 A, 1 (1686 — ) 4.
— 218 A, — 1134 A, + 330 4
+ (2045 — X) A, — 424 A, + 179 4,
567 A
0= — 1860 4 + 166.8 A, 567 A»
— 424 4, ' 4 (6303 — N Ay + 1437 As
0 = -+ 18.60 A, + 280 A, + 330 4,

1 358 A, — 2874 A, + (13674 — M) 4 -
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Since the coefficients are calculated with a atide rule, the rule an
also be used for carrying out the calculations. Only the ratios of the
coefficients can be obtained from the above equations. Therefore 4,
is set equal to one, and a first approximation is taken for &t 13.95
If this is substituted in the last five equations, the diagonal terms
are predominant and, by peglecting the other terms, we get &s a fint

approximation 4, = 0.04085; A, = —0.01112; A, = —00084,
A, = 0.00296; A; = —0.00136. These, substituted in thedirst equ-
tion, give as a correction for A \

2 A\
AN = —32.08 A, + 18.60 4, + 32.08 A, — 3T204,% 18.60 4,

_ —1.203 — 0.207 — 0.175 — 0.110 8,025 = —1810
Therefore hs = 12.14. This value is subs}it\.uted again on the right
gide of the last five equations, which hre'put in the form
(4118 — ) 4, = 1604 + 12\0’:}?,4 133.6 A, — 166.8 4

S 3

‘ -140-‘13

(1686 — N) A, = —1860 + 240 A, + 2180 4+ 1134 4,

N — 34

From th}s,\} new set of values A, - -+ A, are obtained; with thes
new valu of A is obtained, and so forth. The sequences of approxit
tiom¥alues are given below:

TABLE III.

.»\’ N
'\\" 1 11 \ I v l v lﬁ_—_—.—

ii 1.0.04035 | 40,0342 |40.0384 |+-0.0372 [+0.0379 +0.03765
4 L 0.01112 | —0.00375 | — 0.00620 | —0.00484 | —0.00539 | —0.00480
As —3.00547 —0.00272 | ~0.,00367 | —0.00320 | —0.00340 | —0.00320
4, $0.00206 | +0.00020 | +0.00127 | 4-0.00071 | +0.00095 | +0.00083 o0

, |—0.00136 | ~0.00115 | —0.00186 | —0.00164 | —0.00178 | —0.00172
A 12.14 | 1266 12.40 12.51 12.45 1249

The caleulation of harmonics can be performed in & W&y s
the above. We set A, = 1, take as a first approximation x =4
and caloulate the coefficients from the first and third 0 the &
equation. The convergence is very siow because of the maguitsle
the partial derivatives. If no parameter enters into the equation’
can make the coefiicients small in comparison with the di tr
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by multiplication of one or another equation with a suitable factor,
and subtraction from the other equations.

9. In the secular equations considered in the above example, it is also
possible to remove the terms not on the diagonal by a transformation due
1o Jacobi,' thereby improving the convergence of the process. If the
coefficients of the equation are designated by a double index, the first
digit of which gives the number of the equation, the second the number:
of the unknown, we have O\

{ o

f BTy F e + Gata + -+ a0 =0, N
an g2 ! @2a®y + @2a¥z + AmaTs + - +a =0, ( M

S
fa * Gay%y + Gpea 1 Qaals + - ap = GE%G-,

where all coefficients on the diagonal may be larg@bmpared to the ?therf;,
except that either or both @, or gz may p(large and thereby impair
the convergence of the interation processy If)some other coefficients are
involved, the calculations follow in the satag way. We sat

cos 2A-z, = cos (a +ﬂ)E“1 + sin (o — M),
18) PN .

cos 2A-z, = sin (& -i— A}El — cos (@ — A,
where o and A are determ{in:ed from the equations
(19) p COS 2o = G],;,\>~ ..{132 i P sin 2a = th: + 8oy ;
pSin 2A = 0y — &2
</
If we put the,x@w equations
{20 Kégl cos (@ — A) + gesin (& — A);
”:\ vz = g1 sin {a 4+ A) — g2 008 (e + 8)
»'\iﬁ;ﬁisjce of the first two equations g, and gz in (17}, then the coefficients

\ gy, end @, vanish in these equations, as can casily be determined by
substitution. We then get the system of equations

71 ek tapte+ - ta=0
1) Ya - + crpefy + 2aTa + =0,

[+13 :aalél + @gofz 1+ BasTs + -8 = 0,
where
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(22)

as may be seen by substitution.

PRACTICAL ANALYE1S

a a
a1,=“—“—'-‘['2—-a—’g+-gcos2a, an—--‘—‘%-ﬁ--gcos%i,

= (in €OS (@ — A) 4 8z, 800 (@ — A):

oy = Gy 5iD { + A) — @2, COB (e + A);
&y €08 2A = @ c08 (o + A) + 2. sin (e - A); &N\
ey COS 2A = g, 8in (& — A) — a cos (& — A), £ \\

For a check on the caleulation, we can use the fact that N

(23) &y + fy2 = G1r + Oz ) ot + ﬂsnﬂ’}e S Gyula F Ouzline -

10. In the calculation of examples of Ses 8 "éhe coefficients g, =

—120 and @,; = —240 are at first dlsa@reea.bly large. To remove
these coefficients, we set
(232) peos2a = 12742, o gih:éée}: —360, psin2a = 120.
From this follows R » '

17’2"’5 7, = 2°36".0.

By & continuation of the computatwns given above, we then get the
systern of equatmq.m\

(13.95—2) AO\V\QS 27 4, —21.55 A,  +32.08 4,
—37.20 4, 418604, =0

T % 2% Ay +(389.6—)) 4, —153.13 4,
7, +61.57 4, +160.83 4; =0
, 1;',\\121.21 Ao (1708.2—2) A, +190.04 Ay
"\,y’.; 4114541 4, —2004, =0
/Gy 41604 A, —111.90 4, —121.22 4, (29453 4s
—42¢4 A, 179 A4 =0
G, 1 —18.60 A, +61.05 4, 458171 A, —424 4,
+(6303—2) A, —1437 4. =0
G 1 1860 A, +336.77 4, —303.66 A, 1358 4,
. —2874 A, +(18674—2) 45 = 0.
In this, the terms a,; = —1437 and @, = —2874 are especially

annoying. To remove these, we must set
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pCos 20 = 7371, psin 2o = —43117, s sin 2A = 1437,
and we get @ = 164°50.35", A = 4°50.62". The new equations are

then
(13.95—2) 4, ~28.27 4,  -21554, +32.08 4,
—29 4, ~25.32 4, =0
—14.26 4, +(389.6—2) 4, . —153.13 4, Q.
+117.63 4,  —15831 4, =0
. 2\ AN
—21.21 4, (1708.2—X) &, +190.04 4, ,~N
+988.18 A,  +506.63 4,4 > =0
+16.04 4, —111.90 4,  —121.22 4, +(2M550 4,

—342.07 4, +255.60 4,

—14.97 A, +120.37 A,  +517.93 4, _~3853.03 4,
+(5T79.8—N) A\ =0

—23.84 A, —295.54 4, —1—484‘3521} —481.45 4,
+(14197.2—)) 4, = 0,

[
(=

The iteration process then gives ~j": .

I II Iy ITE IV v VI

N

A, +0.0380 | 40,0855 *f +0.0373 |+0.0370 [40.08715 |4-0.03715
Ag +0.01251 —l-U?Di 11 +0.01210 [40.61192 |40.01200 [40.01198
4: | —0.00547 [$0.00305 | —0.00345 | —0.00330 |-0.00334 |—0.00332
As +0.00258, +0.00034 | +0.00067 [40.00052 |+0.00055 |4-0.000540
As +@.00168 ) +0.00186 | +0.00194 | 4+-0.001635 |4-0.601935 | --0.001933
; 235 12.55 12.46 12.47 12.47 12,47
..\n
Furt]ie:{}rariations do not cceur. If, from these values, we caleulate
th‘e‘b'ﬁginal values A according to the equations {18}, we get

(A= +0.03779, A, = —000518, A, = —0.00332,
\V; ' A, = +0.000866, A, = —0.001742.

If the iteration process iz repeated with these values in the initial
equations of the example in See. 8, we get the same results. When
we begin with the iteration process, the rearrangement of the equa-
tions must be left to the experience of the computer, If it is a question
of determining the collected values A, it ean be adventageous to
reduce all members off the diagonel to zero by the Jacobi transforma-
tion.
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11. Tf we want to calculate the real roots of a real function by Newlon's
method of approximation, we replace the curve representing the function,
not with a chord as was the case with the method of false position, but
with a tangent. The equation of the tangent at & point with abscissa z;

is given by

¥ — f(xl) — f’(%),

T — & ~
and its z intercept is N
) RO
f (31 '\
24 e =& — T2 \
(24} ] 1 f’(xl) 4 ,":,‘
i.e., the correction which is added to x, to get 2, is /)
(25) Az, = — Fix)

F@)

a value which is also obtained if f(z) is c}e?‘el‘éped about zero in a Taylor
series, and the expansion is terminated/Wwith the linear term. If we ealeu-
late the value of the function for z‘and if this still differs greatly from
zero, we must repeat the caJclﬂatiQii once more for , .

To find out the best way to begin this approximation method, we first
assume that we have a simple root, that therefore f'(z,) # 0, that there
is no point of inflection in ghdinterval,ie., that f/(z) = 0 in that interval.
As may be read from Fig'\72, we then get a sequence of values approaching
the root from one sidQ{\iﬁ Fig. 72 from &, < z, . If, on the other hand, we

A O _IFFY £1£17] Y
2-1HA AN F={# Xx|-1## [+
Xt \/ £ IFFZE X-==

Fia. 76

start. out from the other value z, , then we get a new valug %, which lies
on the other side of x, , so that we get, under certain circumstances, no
sequence of values approaching the root. It is therefore advisable to begin
with a value which gives a monotonic inereasing or decreasing sequence
of roots. In addition to the case represented in Fig. 72, there are also the
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three cases of Fig. 73 to Fig. 75. From these may be seen that the function
and its second derivative bave the same sign at a useful approximation
point.

To determine the degree of approximation attained in each step, we
observe that the Newton method is only a speeial case of the iteration
process. If x patisfies the equation f(z) = 0, it also satisfies the equation

(26} x=x——'ﬂx—)= O\

F(2) elz), ' \:\

if f(z) »* 0. The tteration process can be used on this equatiorl'h.nd' the
Newton formula giver above is obtained: \ &

277G
L 3

Sz 4D
Xy = B — = = plz,). (¢
TR T Py T (N
By consideration of See. 5 we obtain a better ap imation value, if the

maximum absolute value of the first derivative af\p(:c) is smaller than one
in the approximation interval, i.e., if ~

" "N\
f(:v)’f‘ (::)
RER D)
From the considerations in Sec."ﬁ"lbf this article, the approximation ap-
proaches the value of the root from one side if ¢’ > 0, ie., in agreement

with Fig, 72-75, we must lla.'(’e'a first approximation value with real roots
for which i

N @) @) > 0.

(27) lo'@) | = <L

The approximatioh¥alues then lic on the convex side of

the curve. Sincé the method of false position gives a

better approxitaation value lying on the concave side, -
we can combine the two methods' and obtain simul- %X
taneoyslynew approximation values for the upper and

lowgrlimits of the interval. On the other hand, in the

application of the method of false position, either the

gond limit value must remain unchanged, or tests Fra. 76

must be made Tor the improvement of this value. To

estimate the rapidity of the convergence of the approximation, we form

(Zo — 22) = o2} — olm:).

If we develop ¢{z:) about the root 2, in a Taylor series, and neglect the
powera of {; — z,} which are higher than the second (which is permissible
because of the smallness of (z, — x)), then we obtain, if we observe that
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ooy — T @) _
¥ (Z'o) [f,(xo)]z

H

f7'(0)

2 1
gy — T2 = wlxa) — elEn} — %so”(:vo)(xl — %) = —j e {r, — ),
[mfz, — 30)]2. A

(28) | &2 = Zq I = miz, — -"‘30)2 == m

In the formation of the second derivative, it is again .to"bg\qbserved
that f(z,) = 0, also that the absolute value of —f” (zg)f&?}" () is repre-

R

sented by m. In this way we find that &N

A

| & — 25 | £ mlzs — 2)° & Ti—z[?n(}ﬂf.— %))

(29) \
1 e
(o — @ | = p [z, u,&,) ate.
The errors increase in proportion to t%fg 2nd, 4th, - - - powers of m(z, — %)

If we select 3, near enough fo j;l}é‘..root Zo that this expression is smaller
thazn 1, the process converges extremely rapidly.

For carrying out the computhtion, it is often inconvenient to caleulate
f(z), particularly if f()_is given in tables; then we take two adjacent
tabular values and divide' the difference of the two Az, ie., replace the
derivative by the difference quotient Af{z)/Ax.

Since here also }}Q\bhing has been assumed concerning the real nature of
the values usggi,’the observations on convergence are also valid for com-
plex roots. Tty only necessary that

1 1"(ze)
Z £

in '.t;he interval considered, e.g., 21.1%. The approximation values converge

#

¢ \u
(B0} ™ lze—m | <1

¢t0'the desired value of the root on a spiral curve.

12. Example: In the determination of the characteristic vibmti(_mﬂ
of an elastie bar and also in other problems, there oceurs the equation
, i 1

flz) = tg  + tanh = = 0, j‘(z)=m+m.

From this it follows that

@) = ztg:r._ 2 tanh

cos’® cosh” ¢
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Therefore

1/
2 ')

o]

I I Y T ¢\
7 2 . ¥ A\
1
o Yi 1 N
1 !
e — 1 “~a
: A

¢ <
Fra. 77 \

_ l —tg x cosh® z + tanh 7 cos®
cosh® z + cos® -

me |-

From Fig. 77, il follows that the first root Gf\f(:r: ) lies in the vicinity
of 3x/4. Therefore,

.

\
532" + 1/2 %.0.98 ‘ o1
532" + /2 B

m=|

If therefore |z, — x| < 1, th,qn the process iz eonvergent. If, for
example, we take the value,a :c1 = 2.36, which is roughly 3z/4, then
this is cerfainly the case, Since tables exist for tg r and tanh z, we
replace the derivative W the difference quotient as mentloned above.
This gives, if we usge{ihe tables of Hayashi®

%\
z 2\ g tanh = Y Ay
2.36 135'°‘i}}’. 4.94% —(3.9924 0.9823 G.00199 0.00003
15
2.3650 . :"\135° 307 16.277 —(. 98254 0. 58250 0.00204 0.00004
O\ fz)-ax
WY@ A1) -
N Af(x)
) 1010-0.4001
~{.0101 0.00:202 = 0.0050
202
4-0.001
—0.00004 .00208 - = 0.00041%
208

Therefore x; =

2.365019. We have begun here on the correet side,

since f(x,) as well as f*(x,) are negative, i.e., they have the same
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sign. The approximation values therefore form a monotonic in-
creasing sequence, The error of =, is about Az, = 0.005. The srror

of z, is therefore
Axs = miAlx = 0.0000000007.

since m = 1. The places written out are then correct, if an maceuracy
does not enter into the last figire because of rounding off and inter-
polation errors. There is no point in further ecaleulation; dinlee the
table is only a five place one.

Tor practical caleulstions, it is sufficient in most‘ ba&s hot to
caleulate f’(x.) each time, but to use f'(z,) for a.ll\ca.ses Tangents
are then not used for the representation of t.he~cnrve, but instead,
lines parallel to the first tangent. The number of stéps of approxims-
tion is then larger, but the work of calculaﬁbn 1s appreciably less.

13. As mentioned above, the Newion met;hod can be considered in the
following way: we develop the functio 'f,r..\= f(x), whose roats are to be
determined, in a Taylor series a.bout."x eighboring peint z;, of the root
Xo -

J'N'

@D @) = ste) + 17 age® N (m*) (ae)® + L8 (- = 0.
We terminate this series w1th the linear term in Az, and caleulate the
correction from it. Now\it is possible to consider additional terms in the
development, i.e., toiréplace the curve, not by a tangent, but by & curve
of higher order, v}k}eh at the point & = @, , has the higher number of
derivatives in common with the given eurve.

We can cqnglder the value of Az, so determined as expanded In & power

serie i (4
62207 am = af(e) + 50 @) + () -

Thﬂs will lead to. a more convenient ealeulation of the approx]matlon

:'Yaflue, If (32) is substituted in (31) and the method of undetermined
“eoefficients is used, i.e., if the factors of similar exponents of f(z,) are set

equal to zero, we get
0 = f(=) + [af@) + b(f@)) + e(f@)) -1 fx)

#

+ laf@) + b -+ 17 LB o agiey - 7 I

1

(32a) 1+ af'(z,) = 0, a=—-—"
flx)
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o chere o, ee-iEe
k2

_ Uy
2(f" (@)

f’”(xx)\

- o)
If we omit the argument, for brevity, then A\
SR S A (L T
@ mma g I T
Of course such a formula is of use only if the derivﬁti}e\s can be easily
caleulsted, or can be obtained from tables,

of () + abf"(z) + %a“f”'(:h) =0, ¢

.l_.

ANY;
(N
14. Example: If the positive root of tl):&e‘(mation

(338) f@) = sinz ©F =0

is to be determined, an a.pproxi%,ﬁnﬁiou o, = 1.9 is easily found by
graphing. From this it results; i we take f(x,) to seven decimals, and
the derivatives from Hayashi’s tables to five decimals,

~ {7(1.9) = —0.0037000,
£ )

(33b) NN 71) = —0.823%9,
ST e = —0.91630
and if ;;.\’ééﬂbﬂd approximation is sufficient,
A\ 0.0037000 _ 0.94630

#p =19 —
(\(33¢)

2
0.82320 ~ 2(0.82320)° 0.0037000)

/N

\

1.9 — 0.0044942 ~ 0.0000118 = 1.8054942.

The term with the third power f* gives 2 5 in the eighth place after
the decimal point, so that we can assume that the ealeulated value is
correct to six decimal places.

15. Just as with the iteration process, the Newton method can be ex-
tended to equations with several unknowns. The Newton method consists
essentially of a Taylor series expansion about & point in the neighborhoad
of the desired root. This series is broken off with the linear term, :
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The same can be done with several, or » variables, and there results
for n arbitrary equations with #» unknowns 2 system of n linear equations.
The procedure is the same as employed in the error ealeulation of linear
error equations. If we have two equations f(z, ) = 0 and g(z, ) = 0,
then we set for the approximation values =, , ¥: :

f(x! 9‘) = f(xl H y-‘l) + f:(xl H yl)'ml + fv(xl 1 yl)Ayl = 0!.

(34)
gz, ) = gl , 1) + gz , 1) A + g ,y:)Ayl = U

From these equations new apprommatmn values z; , yaware ca!culabed
provided that the function determinant is D = f,g, f,gr: # 0. These
new approximations are

@) - m=am - BTy, = e
But this is just the same as if the 1teratik@boprocess had been applied to
the equations SV

66 v = 5 — L8 o g ) O =y 4 Lt i)

If 0 , o are the desired roots, }%e'can set
(88a)  xy — 2 = plze s Jopd = e(@, 1) o — y2 = ¥(To, ¥a) — i3, v

and can expand about‘{he point in a Taylor series:

elz: y!) %\ﬂ(xu s ¥o) T eulms o) — 1) + o, Yot — yﬂ)

2[‘(’::(*’1 - xo) + 20,020 — Z)yn — ) + enlih — yﬂ)"]r

(86b) .0
\\4’(""’1 ' ylj' = Y& , ¥o) + Yalas yu)(xx — o) + 20, yo)(yl - yo)

al
.

e + %{;":,(x] — 2’ + 2. (e — 2)(th — Yo) + Yaulth — o)}

) 2

Sinee now f {20, ¥a) = O and g(x,, ) = 0, then

saz(xg,ya):l—&%&zg, %(xo,yu)zf”_l;g”=0,
(3fic)
‘Fr(xﬂ ] yD) = LM"M'! = D, \z'm.(xo H yﬂ) =1 + M =

H the largest of the absolute values of the six second derwatw&a in the
approximation interval is denoted by m, then
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Tg — o = Qﬂ(xﬂ ,‘!Io) - @(II ] yl)

m ]
éE[]mﬂ_ﬂ:l] + 22—z |- |y0_yli+iy3_yi]2]
(36d)
é%[t%“‘xli“" lyo*yl i]z
N
yn—‘ysé%[f%—%]‘FIyo—yzi]z- .\:\'
N
As in the ecase of one unknown, y M

%

- O e
P P P B LA ¢11-:%m£v: N

and in general
BN lz—=z.|+ lya —'?lu! éi—%[m]xﬂ{‘*g}ﬂ—l—mly‘, - 11%_1-

Therefore here also we have an extremely tipid convergence to the value
of the root, if only the first approxizhation value is chosen sufficiently
clese to the root. 1t is usually dlﬁi'cult to get these first approximation

values. With two equations in t‘WO “variables, for example, we can ﬁnd
it by approximate sketches of the' curves f(z, ) = 0 and glz, v) =

16. Ezample: An vbatlc steel wire (E 19,060 kg/mm y =
0.0078 kg per ter 1ength, and 1 mm® eross section) is stretehed
between two supports which are d = 2w = 100 m apart. The wire
has a sag,_of; h 2.5 m. What is its length 2L and the horizontal
tension HO\™

If thé\)aramet,er of this more general catenary is ¢ = H/y then
tha@ﬁ‘ﬂwmg equations hold:**

'\

‘31{2
S e (9

\) E
2% 1/2
h=a.|:(1+L) -1:|—|—ﬁ1f.

N
AN\ (37a)

Approximation values are obtained if the chain is first assumed to
be inelastic; by the example in See. 3, we then have

d _w 2 2
2= = = T T

20 o’ T 12 7
from which results z = 0.09992, and from this,
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= 500.40, L, = 50.085.

" If we now develop the above equations in Taylor series, then

Ly® 1
w—[alln(i—?”-l-(l +“a—f) )+9E’TL1]

Aal:ln(L‘ + (1 + Lz)m) T +I;L$ v+ 5 ]\

\..

NS T Eﬂ]
+ AL[—H-—*-H—(I LA + i3

ol 5 - ) ] e s

.‘.\ 1, TLl]
ok AL —mMm—————— +
:‘k [6‘-1(1 + Lija))*

If we subatitute the &pprommatmn values calculated above, it follows
that Y
—0.0148 = »,';ﬁa X 0.000358 + AL X 0.995

—0.00250% —Aq X 0.004075 4+ AL X 0.996.
&
From these equa{im?ls, caleulation yields

A, AL = —0.015, Ag = 0.204,
Therefore':{;fx‘e:’better approximation
R 4 = 500.60, L, = 50.07

@lts If the accuracy achieved is not sufficient, we must repest the
. wehlculation with these values. With regard to the value of L we must
& (" " observe that the elastic wire undergoes an elongation which is given

< W by
Lm«( L")”" e’ [L ( L")”’ _

A=SE A\t toph 1+ | = 001004
so that the real length of the wire is L = 50.08 m. The horizontal
tension is then _

H = ay = 500.6 X 0.0078 = 4 kg,

The wire can then be stretched much more,



ROOTS OF RATIONAL INTEGRAL FUNCTIONS 227

NOTES

1. For proof, scc Weber, Lehrbuch der Algebra I, Art. 118, Seliwanoff, Lehrbuch der
Differenzenrechnung, Ch. IL No. 17 {Leipzig, 1904).

2. This method is frequently used in business arithmetic. For example, for the
determinstion of the effective interest on & loan from tablesfor the cash value of a bond;
ef. Loewy, Mathemalik des Celd- und Zohlungsverkehr (Leipeig, 19203, p. 162, 176, 184,
Occasionslly a generalization of the above rule is also used, the so-called mean power;
of. Goldziher, Z, f. angew. Math, w. Mech 7 (1927), p. 323. "

3. K. Hayushi, Fanfstellige Tafeln der Kreis- und Hyperbelfunktionen soute (br
Punktionen e and e~ {Leipzig, 1921). N\

. Scheffers, Sitzungberichie der Berliner Math. Gesellschaft (1916), pp. 28-34.)
. Bicherbach, Lehrbuch der Funktionentheorie T {Leipzig, 1923), p. 357N

. Deimler, Z. f. Motorluftzchiffahrt und Fluglechnik 1 (1010). ¢ ™

. A generalization is found in Montessus, Méthode géncrale del ddfermination des
racines des équations ériques {Louvain, 1910). AN

8, Beidel, Munchner Abhandlungen, 11 (1874), Part 3, pp. 81108,

9. Ritz, Annalen der Physik 28 (1909}, p. 763. \J

10. Jaeobi, Schuh hers astronomische Nuchrivhter, wob 22, No. 523; Werke II,
Pp. 467-478. N

11. Dandelin, Mém. de P Acad. Roy. de Bruzelles, 3 (ﬁQﬁ}, p. 30.

12. Skrobanck, Z. f. angew. Math. u. Mech. JR{1922}, p. 472.

=1 3 oo

15. The Roots of Rational Integral Functions.
1. If we compare the develop;qfeiit of the rational integral function as

*

it was carried out in 7(8}, N\
1) glx) = af + a’(® :\mﬁl) + a7z — )"+ 0 sl — @)
with the Taylor exp@aﬁ

o) = e g — o) + o - w4 -

N
(1 a') £ )
7, tm)
#9268 ¢ oy,
\'§ - !
it w111 be found that

~\ D gz = a6 [mad = ¢'lw) = ol 2name] = 297" @) = ai’ -
\ :(2) . in}
[z, e @) = nle, = g (2.
This also follows direcily from the theorems on the divided differences
with repeated argument (11.1}, This fact is of importance for the ap-
proximate ealeulation of the roots of a raional integral function by Newlon’s
method.
If an approximation value 2, has been found for the value of the root,
then, by means of the Horner scheme, the function is developed in powers
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of 4 = z — z; . Such a scheme needs to be used only twice to find af and
ai’. Consequently, a new approximation value is obtained:

a5
(3) ks = & — a_-{’.
With the new approximation value, the development in powers of # — 2,
is carried out, ete, The disadvantage of this type of ealeulatior is thaj as
one goes further, the numbers must be multiplied by an ever incréag

number of digits. A\
Therefore it is better to carry cut the development in pov(ers Uf U=

x — z, all the way through, and develop this function of N\l powers of
v = u — u, , where u, is the correction to be added to&; AThen this de-
velopment is also carried out completely, ete. ’I‘hen yone hag only fo
multiply' with numbers of fewer digits. v N\

2. Example: As an example, we choo%e.\\ }
2 — 302° + 235&7 = 0.

This equation has the a,pproxm:tate root z = 1t We make a de-
velopment about this point by.ﬂ];e Horner scheme:

1 -30 o0 o 2368.7
11-8% —209 —2989
I —19 —200 [£50.7 = gta)
k11 — 88
1 < B —297 = g'(x)
\\ o =297 = g’
.\‘L + 3 = Mg"(m)

g{z,) afid g” (z,) have the same signs. We therefore approach the
a}xs&f the root from the correct side by a sequence of monotonically
inredsing approximation values, As a correction we obtain

ad

~O° w =2z =24 = o001,
C \ 97
The error of this value is, according to 18(21),
1 fxy)
Fom o | I8 g ey =2 0 g0
: = i) (z — =) 2 297 0.2° = 0.0004.

To caleulate further, we now start out from the function
'+ Bu* — 207u + 59.7 = 0
and develop about u, = 0,20, neglecting the last place:
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1 3 —297 +50.7
0.2 068  —59.272

1 32  —20636 | +0.428 = g(w)
0.2 0.68

1 34 | —205.68 = g'(u).

If the eonstant term of the given equation is accurate only to a half
unit of the lasé place, there is no point in carrying the ealeulation
further; we therefore terminate the scheme. We have .

2 AN
0.428 -~

- = 0.00145. O

¥ = Al = o508 =

.
7N

Therefore x = 11.2015. If the caleulations had beep p@rriéd out more
accurately, the error of the third approximation mu‘id have been

F, = m(z — m)* = 0.01° X 0.2° 0:000000002. -
IR
3. It frequently happens that several oF NI the coefficients a. , 2n-1 ,
-, @y of the function are taken fromy experlmenta,l data, so tha,t they

possess inacouracies —A4, , <+, — A\ Consequently, the root z, which
is gvaluated from the equation Y

(4) ™ - Gans :L‘““l + + e + ag = 0,

kas an error —E; therefore the correct value =, + F must satisfy the
equation N

(e, + z.\,,)(z‘1 \E) + @y + An)(Eo + BV A

:’..\' + (@ + A)Ee + E) + (a0 + Ao} = 0.

I Eis sms{li\xn comparison with , , the first members of the development
sufﬁce \eé~that

(4a)

Ca,. + AN + 1B ) 4 (@aey F Ba¥az '+ (0 — DETY A
@ )
\“ +(a1+A1){$o+E)+(au+ﬂo):0-
1f this multiplication 1s carried out, we observe that z, satisfies the equa-
~ tion (4), and if the products are neglected, we get

Enaa™" 4+ i — Dae 2y + - -+ 200, + a1
{de) : :
+ x5 + A—n—lx:_: + o F ATt A= 0:

or
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[Azs |+ | A af T [+ o b [ Ao [F A ]
® 1Fl= Iz

If now the absolute errors of the coefficients are approximately equal—
as for example is the case if the errors arise from rounding off, and ali
the coefficients have the same number of decimal places—and if the
Iargest of these is denoted by A, then

(Bl {ffa) | = ]A]- Hlad |+ a4 -

Q!

(6) { LA ]

+TI0|+1[ Idi’r%!

If, on the other hand, the coefficients are determined by"obsewatmn, then,
in general, the relative accuracy will be the same, a.nd‘t.he relative error
5. = A./a. must be introduced. In this case wesmve

(6a)  zoef'(e) = A.BE" + Gorde” .'i".\\" + @,8,% 5 Fabo .
If the maximum relative error is §, it folloyifs,\tliat

(N ]e]S[aI|M|+|fln1x”]l:l}:(x)I [a;xi+|an|-

For very large values of x, th1s becomes s, /na, ;.

4, Bxample: Let the\coeﬁiments of the equation
O “4430% ~ 2262 — 515 = 0

be inaccurate toyone half unit in the last place, because of rounding
off. The inacolracy of the two roots =, = 1.363, z, = —0.853 conse-
auently ae:ammts to

A [zﬂ~—1| 0.5 X 4.25
= . = . =
.&E’ I's IS 982 0.0022,
M:'\'."VIE P ‘ _ 0.5 X 258
) : TeaT = e = 0008
Therefore

x = 1363 £ 0.0022, &g = —0.853 = .0013.

If, in the same equation, the coefficients were known, by observe-
tion, to within about 197, then the relative error of the first value
of the root would be

1648

| < 0011048
lal= 00150 % 1.363

= 0.0123 = 1 1/4%,
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and for the second value we would have

1030
200l ——————— = ==
le ] = 0.01 g aes = 0.0128 = 11/4%,
If the error of the constant term in the example of See. 2 is assumed
{o be 0.05, then, since the other terms are correct,

005 005 ' ~\
—25 2 222 o 0,0002.
Py 297

Therefore, the 1aat digit ean be in error by two units.

7 "' \
"N
Ny

5. Approximate values for the roots of an algebraic equation ot be found
graphically by Lill's method. We first seek to draw. two palygons in the
framework of the equation. Between the end-
points of these, B, and B, , which correspond in
Fig. 78 o the va.luesm = 0.95and x = 1, lies the L.\J
point A, . We then try, by interpolation, td ¢
draw the broken line between these two poly:” /.~
gons whose endpoint B coincides with 4, .\This =
then-determines a root x, of the equation. “This
construetion is materialiy simplifiedby the use
of transparent millimeter paper, slhce then the
polygons do not have to be, drawn. Instead,
they ean be followed on thé millimeier paper,
appropriately rotated about the cmgm.

According to the a}@ngements in 7.7, we can now use the polygon
determining the ro¢tyas the framework of the equation, from which the
missing roots of {the given equation can be determined. Of course the
scale of me rement iz X times as large. After each root is found, the
degree of thé equation decreases by 1. Finally, an equation of second
degree ﬁgobtamed where the structure consists of only three lines. A
polygo’n two lines is drawn between the beginning and end points. This
condpuiiction can be carried out exactly with the cirele of Thales, using
ti:,e»lme connecting the two endpoints as diameter.

Fic. 78

Exzample: In the figure, the equation
18.5¢° + 16,12 — 2442 — 7.9 =0

is represented. Two polygons, eorresponding to z = 0.85 and 2z =
1.0, straddle the peint 4, with their endpoints. The interpolation
gives z = 0.98, If the circle of Thales is drawn on 04, as a diameter,
this gives the two dotted lines, from which 2 = —1.6, £ = —0.3
are found.
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6. The roots of algebraic equations can often be found with comparative
ease, graphically as well as numericaily, by use of addition and sublraction
logarithms® (cf. 4.7). For the graphical solution, we first construct the
tgadition curve,” i.e., to £ = log t we plot 7 = lIog (1 + 1/i) as ordinate
1f we set £ = z,/%, , then _

(8) log (z, + #2) = log & + 7

1f therefore we have the lengths log z and log @ , we plot their diffefence
as abseissa, and plot the corresponding ordinate on the greater Tenigth
log z, ; this gives the length of log (zy + %2). N\)

If x, is large in comparison o 2, , the curve ordinate becordesivery small;
for z,/%, = 1000, this ordinate can safely be neglected in, the drawing. But
the relation alse holds for 2, < x,, only then £, == log\h id negative, and
is therefore marked off from the origin to the, 1pft.” To construct log
(21 - %) graphically, the ordinate helonging taMw= log £ is plotted on
the length log «, . For the drawing of this portion of the addition eurve,
we observe that, for negative §& = —§ \ O

X

b %

log ¢, = —log t = log %—4 je, b =

~

log (1+}1) =g L+ 9 = 10gt(1 +1‘)

(9) 11

RS

tog 43 (1+3) =&+ 108 (1 + - £+
The positive x gxi:s and the bissctor of the second quadsant are therefore

the asymptobestof the addition curve. o
The corgf{s(uétion of log (z, — z,) from log z, and log z, can also be car-
ried out”with this curve, if we interchange the ordinate and abscissa
(of. 47), but it is better to draw a special subiraction curve, in which we
mazkoff 4 = log (1 — 1/i) as ordinate to £ = log ¢. These ordinates are
. il negative. Their length, taken in absolute value, is then to be gub-
{ ;tmctfed from log x, to get a distance of length log (z, — ). This gab-
traction curve is symmetric with respect to the bisector of the fourth
quadrant. If then we have two points of the curve (¢ , m) and (&, )y

then by symmetry & = —#, 7. = — & maust be on this line. Therefore
1
(10} 72 = log (1 - t_z) = —f = —logt = ]og%,
Le., '
(11) l—lnl; tB:———l
T 1 1-1/4
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from which it follows that

12) £ = log, = —log (1 N tl) = —m,
1

so that the symmetry is demonstrated. Also, the negative %- and the
positive f-axes are asymptotes. Fig. 70 shows the drawing of both curves,

L4

+

B 0 A R
R

-7

"”:E:zq ™
with the help of which wa,how eonstruet the logarithmic drawings of the
funetion. \\ \J

7. To constructy ti:re logarithmic graph of a rational integral function,
we plot £ = log, ’as abscissa and # = log y a8 ordinate. The graph of
¥y = g.z" I8 t'hen a straight line:

\ﬁ mE + log | an | .

Of co‘m:}e this representation is only possible
,.Qr posxtlve values of 2. To draw a function

\ ¥ = a.z" + az"
we plot the two straight lines
7 = mé + logfan|;

= nt 4 Jog| g, Fie. 80

and draw the Ioga.nthmlc curve from them by means of the addition or
subtraction curves, according to whether a., or «, have the same or oppo-
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site signs. The two straight lines are asymptotie to this curve. Here also
we obtain curves only for z > 0, since the logarithm of a negative number
iz complex. If we also want the graph for # < 0, —2 must be substituted
in the equation for z, and the curve of this equation constructed in the
same way, whercby, under ihe circumstances, % is replaced by —».
Brauer has constructed a special compass with three points for carrying
out the addition. If two points are set on the corresponding points of the
two curves, then the third gives the desired point of the curve,’

If we have an expression of the form O\

¥ = 02" + 2" + a2, O
then we first plot the curve g = log (a.2™ + @2") @Asiabove, and from
this and the straight line 4 = pt + log | a, |, we [ilet the desired curve
by use of the addition or subtraction log&ﬁthms.}'lhe graph of such an
expression can be represented step-wise. Such\an"expression consists of &
great number of these summands. AN\

If the roots of such a function are to_ élhetermjned, it iz advisable fo
put the negative terms on the othenside, so that the equation has the
form QO
el = ¢(2)
where both funetions, which {iow contain only positive terms, are to be
constructed by the above method. Mehmke, who first worked with log-
arithmic graphs, has sh{\%m that one obtains two curves concave wpwards

‘l\<

Fia. 81

for positive 1, ﬂ'lfi intersection of which gives the desired approximate
value of the roots.” Now and then, better intersections are obtained with
another distribution of the summands, but there is no general rule.
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8. Ezample: The equation
gp=5"—62"+ 42 + 2" -~ 8 =0

hzla,s a oot between = 1 and # = 2. The equation is broken up and
divided by 2° to avoid too steep a curve, so that

5 4 4+ 2= 62?4

z 7 N
The curves are drawn in Fig. 81 between £ = 0 and § = 0.301.-For
the left side, 52° + 4 is plotted first; this gives the curve n@.i'kéd by
the unconnected circles. From this we get the drawn curve’by addi-
tion of 2/z. The curve representing the right side ig"dafted. As an
approximate value we get g,

't ¥ ;
< &

£=005, ie,z=11300"

For numerical caleulation by use of the gdditron logarithms, Runge®
has rearranged the approximation methods gi{én\in this section.
P

9. Finally, we note that apparatus hés'been constructed for the me-
chanics]l determination of the rootsnof an algebraic equation—the so-
called equation machine or can'ia.gé.:This is & mechanism on which forces
are acting, the magnitudes of which are determined by the coefficients of
the equation. The equilibrium “position is then determined by the action
of these forces. The root{of the equation ean be read off from such a
position. )

Ordinary eaﬂ_:iage%\\ayétems of such devices, rotation machines, hydro-
static machines, élegtrical machines, which are based on Kirchhoff’s law,
or electromagquic" devices, which use the magnetic fields of electric cur-
rents for the dctermination of complex roots, are all nsed. All these devices
provide yerfrough approximation values, which can then be improved by
one of. themethods of the preceding sections. Further information on these
meghanisms can be found in the literature.® :

O NOTES

1. Buffini, Sopra e delerminazione delle radici (Modens, 1504). Horner, Phil. Trons.
(1819}, I, p. 308.

2. Mehmke, Leitfaden zwm graphischen Rechnen {Leipzig, 1917); Zivilingenieur, 35
18897,

( 3. )Dyck, Katalog math. u. math.-phys. Modelle, Apparate v. Instrumente. Appendix
{Munich, 1893), p. 40; Pleiffer, Z. 1. angew. Muth, u. Mech. 5 {1925, p. 172

4. Mehmke, Leitfaden zum graphischen Rechnen (Leipzig, 1817).

5. Runge, Prexis der Gloichungen (Leipzig, 1900), p. 127.

6. Mehmke, Eneykl. d. math. Wissenschaft I, 2. Numerisches Reehnen; Jacob, Caleul
mécanigue (Puris, 1911); Riebesell, Z. f. Math. u. Phys. 63 (1915), p. 256.
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20. The Number and Position of the Real Roots of an Equation,

1. Approximate values of the roots of the equation must be known be-
forehand for all the methods deseribed in the two preceding articles. In
order to find these, we enclose them between definite limits, ie., the
number of real roots lying in a given interval is determined. As a criterion
for this, we use the number of the sign sequences and sign changes the
particular funetion series has at the ends of the observed interval J{we

have a sequence of functions
N
N

(1) f(:c): g(x)! h‘(x) "t s '\' \/3
and if we substitute for # a particular value ¢ in all such fitnctions, and
consider only the signs of the individual funetion valyes, then we have &
sign sequence if two successive function values have. the same sign. We

have a sign reversal if they have opposite signs, 8

AN )
2. By use of this concept, a rule is put ioﬁvard by Budan and Fourser
which gives an upperlimit for the number }f the roots lying in sn inferval.
By this rule, the sequence )

(2) f(ﬂ?), f’(x)’,"":"-f"(x) - ]-(n}(x)
is to be formed, if we seek the Sumber of the real roots of an equation
(2a) s D =0

&

3

in an interval frorr\:i\‘= @ to z = b, where @ and b are not roots of f{z).
We then substitute % = @, = b in this sequence. In this, ™ (x) must
not change its sign/in the observed interval. In a rational integral function
of nth degree, $his is obviously so, since then F™(z) = ¢ is a constant.
Bus the'tlmorem also holds for an analytic funetion if only F™'(z) =
¢ doegrczi:‘change sign. The rule may be stated as follows. If the above
conditions are fulfilled, then

(@) “the number of sign reversals in the above sequence can only decrease

o~ QAvith increasing z,

V" (b) the number of sign reversals lost in an interval is equal to the number
of the real rools lying in this interval or exceeds it by an even number.
To derive this rule, we set forth the following considerations:
{8) If =, is a simple root of f{z) = 0, then for sufficiently small & if
the curve intercepts the X axis increasing or decreasing,

I ¥ 13 f"

(3

-k o=+ w—h{ + | -
%+ A + + 2+ A - -
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Therefore, in the beginning of the above function sequence, » sign
reversal is always lost whenever z passes through a real root of the fune-
tion f{z). With & double root, two sign reversals are lost, with a triple,
three, ete. This can be considered exactly as above, but it is also a conse-
quence of the following considerations.

() X x, is a root of m consecutive functions

(4) f('_“-t-l(m); f(r‘nﬂz) (x)! Tt .f(r)(x)i O

N
then, if we expand in a Taylor series, (\A
7N\S ©

£+ B) = B0 + B ) + B vy

N\
(5} f(r—l)(mu + h) = %_iftr-ﬂ}_(xo) + ;]‘_Tf(r+‘z)(xn) _l’_. .:- 5
: - :'\\:
{r—2) ha {r+1} h‘! Q;:‘m\)“
Fo e+ by = 57 £V o) + 8 G + -

S

If 1 i sufficiently small, theri*the first term determines the sign of the
right side. Therefore, for positive k, all functions f ") to FU ()
have the same sign in theimmediate neighborhood of the root, while they
have alternating si ‘for small negative h. All ali events, sign reversals
are lost with increasing @. For more exact investigation, we distinguish
two cases: MY, . )

(@) Let m Belant even number. Let us take as an example, m = 4; for
other value)of’m, the result follows directly. Further, let us assume that

- §U*V ()38 Positive. This is not a serious restriction, because if J e (o}
is negative, we simply give the entive function sequence the opposiie
sign. We have then the following signs:

QY

N
\ s
3

l Fio |y l;‘f(r-!) joL ] gw | it

(6} T —h L+

£ - |+ -]+
%o + ¢ 0 0 0 +
z+h| & + + + + + .

since 17 ™ (z;) can be positive as well as negative. There are four sign
reversals Jost. In general, with even m, exactly m sign reversals are lost.

(8) Let m be odd, say m — 3. Then we have, under the previous- 8s-
sumptions,
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J'(r—!) )"{r—i) f(r—‘k) 'f(r) 'f(ri'l)

) w-hl x| -1+ =+
o L% i} 0 0 +
m+rhl = |+ 1+ 1+ +

According as fU* and f“*" have the same or opposite signs, we lose
here four or two sign reversals. In the first case, the one sign reversal
shifts one place to the left. Therefore the following is obtained: N

If x, 15 a simple root of f(x) = 0, a sign reversal is lost at thig‘place in
the above function sequence. A\

If s is @ root of m derived funciions, then with even m, gripavith odd m
cither m — 1 or m + 1 are lost. Hence an even number of sign reversals is
always lost, Y,

In particular, if for each value of 2 for which a desivative £ (x) is zero,

the preceding £V () and the following £V (g).afe not zero, and have
opposite signs, no sign reversal is lost in the gbgltence. Only if r = 0, if
therefore f(x) = 10, is a sign reversal lost. T} (e mumber of roots in this case
is equal to the number of lost sign reversals)

3. For an algebraic equation, .t\ﬁé' above function sequence has in
genersal no sign reversal for x =, &% sinee all derivatives have the sign of
the term of highest power in%» For £ = — «, there are only sign re-
versals, and no sign sequences. If, therefore, no sign reversal is lost in the
interior of the above fungtion sequence, then n sign reversals must have
been lost at the beg'%@ng: of the interval. But this is only possible if the
equation has n real roots.

For z = 0, the.auinber of sign s-~uences and sign reversals of the series
of derivatives'edincides with that of the series of coefficients. From this
is derived thevrule of Descartes or' Harriol: The number of negabive real
rools of aft @ljebraic equation is equal to the number of sign seguences among
the cpg_ﬁhiénts, or is smaller by an even number; the number of positive real
rogiggs equal to the number of sign reversuls of this sequence or is smaller
Wran even number,

fray : ()
fla) i
a b a .

Tra. 82 . Fia. 83

4: The’following proceeds from Fig. 82 and Fig. 83. If we know that
no inflection point of the curve lies between a and b, that therefore f*'(z)
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is not zero, and if we have chosen the interval sufficiently small, then

with two sign reversals lost,
A, no real roots lie in the interval i

@)

e _f@) ) _ @, f®
Pl Tt T e T T e T )

B. possibly fwo real roots lie in the interval if

)

9b)

\~\ “\l 1 = f®(1)/6!

- _ @ i .
b =el> =P T ey O
N\
5. Example: By Descartes’ Tule, the equasion ¢ J}‘."
9a) fl@) = «* — 52" + 32" 4 102° — 8:* — 43'\{-1 =0

can have two real negative roots because of two\sign sequences and
four teal positive roots because of four sign syérsals.

To obtain further details about the{ pesition and number of
the positive roots, we develop f(z) in 2:8éries in powers of u = (z— 1),
v=(u—1)={-2,w=(@— )= (z — 8), ete., according to
Homer's scheme. The number of sign revemals lost in each suc-
ceeding development permits a‘egnclusion s to the number of roots
lying between x = 0 and a:g——-’,’l’, orz = 1and ¢ = 2, ete. Bince we
must always multiply bythe factor i, the number in the preceding
column and one row lower must always be added to each coefficient.
If we form this scKe@e,’ it appears as follows, for example, forz = 1,

1 -6\, +8 +10 -8 —4 +1

1 a7 1 +e o o3 2o
1 (33 —4 + 5 +8 |43 =r@

v D —8 — 1 s =t

1 § -1 ~7 | = 8 = s/

20 o [ -7 =1/
L | = feq)/st

For z = 4, we have only sign sequences in z. Therefore the equation
can have no roots which are larger than 4. We have the sequences of
signs as follows:

g=0 4+ — — 4+ (Gohanges) o) o

z=1 —+ 4+ — — + + (3 changes) - 1 roo0t
possibly two real rOOLE

2=2 — —— —++ + (1 change)
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z=3 — — 4 ++ + + (1 change} 1 real root
z=4 + ++ + + + + (@o changes).

For the investigation of the negative roots, we replace z by —z and

_consider the equation

2 4+ 52° 4 327 — 10z — 82" 4z 4+ 1

in exactly the same way. This gives .
2N
r=1:1 5 3 —10 — 8 41 +18 N
' 1 6 9 -1 -9 -5 [—3 = (=1
1 7 16 415 + 6 [=1 ==
1 3 24 39 | +45 = f7{ I
1 g 33 [72 = £(=1/3L\
1 0 |43 = f9(—1)/4! }
1 L1t = y®(—1)/5! \
1 \\

|L = fo 1761 K7
85 1 ~4

11 43 72

12 55 127 ANM72 173|160 = /(=)

The caleuiation thus far sufﬁvees’,: because we see that no negatives
values can appear, that therefore in this series of terms, only sgn
sequences oceur. Thereforesygthave for f(x)

v=0 v hF o (dchanges) | oot
2= —1 t'\—"-l- — -+ - — (5 changes)
x = —g.:ﬂ- — + — + — 4+ (6 changes).

There stilh ﬁer;:\ains to be investigated whether real roota lie between

1 and 2. §inte /() changes its sign in the interval, the criterion (8)

tiBé ‘used. We must therefore consider a smaller interval. We
b m & = 1 and expand about 1.5:

T

1
bo
=

1 real root

ATAB) = —0.640625, f/(1.5) = —1, f7(L5) = —15.3125 X 2%

N
%
\ }

FULE) = —17 X 31, f9(1.5) = —0.75 X 4!
FO5) = 44 X 8%, F¥1.8) = L X 61

Bince only one sign reversal is lost in the interval, the roots can only
lie between 1 and 1.5. Here also we cannot use the above criterios,
gince f7(z) also changes its sign in this interval, and therefore be-
comes zero somewhere in the interval. We therefore make ithe de-
velopment about 1.4 by means of the Horner scheme:
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F1.4) = —0.676864, f/(1.4) = +1.55744, f7(1.4) = —10.296 X 21,
F1.4) = —16.32 X 81, F(1.4) = ~2.6 X 4!
794 =34 X5, Y04 =1 X 6!

Here we still have the three sign reversals, and the sscond derivative

does not change its sign in the interval. The roots must therefore lie
between 1.4 and 1.5 ii they are real. But if we use the criterion above,

08 I9H ot oss> 1

O\
Therefore there are no real roots in this interval. NS ¢
There is another series of theorems which gives an uppers limit for the

number of real roots in an inferval, but this contributes n{thmg essentially
difierent from the above.'

6. More useful than all these theorems is tlie Siurm series,” which
gives the exact number of roots in an mtervq[.'\%e funetions
(10) f(:l:), fl(x)r .fs(m)) { " : - ¥ fn(z)

of such a series must have the following properties:

1 All functions must have only sitiple roots, and must not vanish at
the limits of the interval; N

IL. The second funection of théequence, f1{z), must have the same sign
as f'(x) at all roots of fley; 28

1II. The last function o"f}i’ne sequence, f.(x), must not change its sign
in the interval; N\

1V. At points wheéxe one of the functions vanishes, the preceding and
following functions’must have opposite signs.

Such a seq ¢nte can be formed in the following way. First we find the
derivative @) of fz). Then {(z) is divided by j'(z). This gives the
quotient @) and the remainder —r.(x). Then
(o 1@ = 1@ 0@ — k).

i Gwe divide f'(2) by n(z), we get the quotient g,(%) and the remainder

\Jer;(z), etc. We then proceed as in the investigation of the least common
divigor, or in the developrent of non-integral rational functions in con-
tinued fractions, except that the remainder is written with a negative
sign. We then have

I (x) = ?'1(5‘)'93(55) — ra(z),

(a2 - @) = relz) 9@} — 72),
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In the following, we consider only rational integral functions. With
these, the degree of the function decreases by one in each successive
term. Then ¢..{x} will be a linear function.

%. There are now two possibilities. If f{(z) and f’(z) have a common
divisor o(x), if therefore, f(z} has multiple roots, then 7, {z) must also have
this divisor. Then 7s(z) must also have the factor p(x}. This process
therefore must lead to this divisor with rational integral funcligns. By
divisien with oz}, f(z) and f'{z) can then be made prime {a\ec{ch other.
Then f{2) will no longer have muitiple roots. In this case,s{g)will be &
constant. If it can easily be determined that an earlier remainder r.{z)
does not change its sign in the interval considered, then the sequence can
be broken off with this term. Further division is theh nnnecessary.

The series ' "’\

(13} f=), = n, YNy @) _
s then a Sturm series. 1t can be seen i e:dxlabely that by suitable choice
of the houndaries of the interval, the{condition I-III ean be satisfied.
But.then IV is also. Since f(x} has anly 8imple roots, by II, a sign reversal
is always lost if a root is passed thfough with increasing 2. If, on the cther
hand, =, is a root of r,(x), themit cannot also be a root of the adjacent
functions r,_,{z) and r,.,{z)pbecause, if, for example, it were a root of
7,11{x), then, since -

(14) 7:1321‘11@) = Gour(2)ra(x) — rour{z0),

it must also be g rbq\b of r,_:(2), and consequently also of r,_(2), Tp-s(E)

-, (@), F@) @); ie, f(x) must have a multiple root at this point,
and this is nofthe case. For r,(2;) = 0, we have
(18) Oy Tp1(®o) = —Tpus(2o)-

.’"\". B
The adjacent functions have opposite signs. If h is now chosen so small
t-}:iaj?'%he funetions r,_,{z) and r,.;{z) do not change their signs between
2y~ hand @ + k, then we have the following two possibilities already

\contained in See. 2(h):

Fp—i1 Te | Fon Fpa Tz Ta+l
6) AP D B A B R
o + 0 — - ¢ +

wt+h| + * - — x + .

Therefore, the sequence never loses a sign reversal at such a root, as
was shown in 20.2. The sign reversal is merely displaced. Now, since
r.(x) does not change its sign, then the sequence can only lose & sign
reversal when the value of = passes through = root.
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8. Example: The position of the real roots of the equation

(16a) f(z) = 5z® — 14.325* + 4.532% — 15.39z° — 0.86z 4+ 23.97 =0

is to be determined. From the equation we obtain

(16b) fi(z) = 252* — 57.28c" + 13.50¢% — 30.78z — 9.86,

and by divizion,

N
rlz) = 47500 + 7.6772% + 11414z — 22.84,
ra(z) = — 111.402% — 32417z + 479.58, O\
(@) = — 40.75z 4+ 4830, A\
() = — 48.95. O
This gives the following sign table: SO
¢ &7
@ | J@ | n®) | re@ | @ Hra |
—e — + - \ - D -
-1 - T - T OF \ - 1 Root
0 + - - e M - 1 Root
+1 - - + \ N -
+2 - - + o\ o - - 1 Root
+3 |+ + i\ - —-
+o |+ H R - -

The equation then has 3 resl ‘roots.

Tke spherical harmorids also form & Sturm series, for which the
equation O

(17) (n + DPnr(@) — @0+ DP@) + nPas(@) = 0

holds. This ﬁé;'r"f;it,s conclusions as to the real nature of the roots
between :ﬁl,and —1 (16.11; 27.8; 27.9)."
2\
9, It tt\{e;"éi‘ﬁ'ereme echeme of an algebraic function has been formed,
then,..i'ﬁthout further construction, conclusions can be drawn as to the
pqsi{iaﬁ of the roots of this function.

N

\ \From Newton’s formula, 10{11},

=1 o - DE—2) s
y:yu-{—%A‘”z—}——(——Q—!—rAi+ 51 Ayse

18
ue =D =t D
nl ’

i can be seen that if ¥, and all the A’s have the same sign for_valuesl of
t > n — 1, y cannot change its sign, since all polynomials with which
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the differences are multiplied are then positive. In this case therefore, the
equation y = f(x) = 0 can have no roots which are larger than 2, =
{n — Dk

If, 011 the other ha.nd Yo, A, A1, --- , Avp have alternating signs,
then y cannot change its sign for ¢ < 0, since then the polynomials also
must have alternating signs, and therefore all summands of the formula
N. must have the same sign. Then the equation f{z) can have no roots
which are smaller than 2, . N\

I we consider the formula 10(13). A\
{ o
t{t + 1 R\
N_(§) = %o + Alamt + &% —(—;'I—) 4o O
{19) R N
' & { -1
A LD fbn )

we find that for like signs on ¥, and the differences, no root of the equation
can be larger than z, , while with altemati}}g signs, no root can be smatler
than z, —(n — L}h. \

If we write the formula (18} in t.hé .fbl‘l]'.l

Nt} = yo + I Al —.{121 Ay + _’ﬂllAgfg
2m N

O R U R RS S YU
n!
then in the inter%f S x < a9+ hie, 0 = ¢ =1, all polynomial co-
efficients of the. erences are positive, and it is cer:ta.m that
NG -2 m—9 1
208, ¢ .\ :
(202) RS (m + 1! “mEl

eﬁfore, the differences A%, , Al , -+ have opposite signs to ¥
theh (x) cannot be zero in the mterval, prowded that

P
Ab/’ RO

._l_

NOTES

1. Frieke, Algsbra I, Bec. 11 (Braunschweig, 1924),
2. Bturm, Bulletin de Féruseae, 11 (1820).
3. Jacobi, Crelle’s Journal IT (1827}, p. 223.

21. Position and Approximate Determination of the Complex Roots
of an Algebraic Equation.

1. I, in the rational integral function
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a 92 =6 + a7 + - izt o,

the coefficients of which may be in general complex numhers, we introduce
polar coordinates z = re’® for 2z, the equation becomes

2 g(@) = ese™® o ™ TV b Foore™ + o0,

or, if we also set ~
( Q(Z) = Cnf‘te”'v_+h) + Cn-lfﬁ-leu“-l)w+h_‘] + .- N
3} oA\
ilp+asd LI 7"\ ’
+ Cire + e’ O\

The complex number is represented by a particular point ¢of the Gaus-
sian complex plane, or by the vector 0, from the ofign to this point.
The factor €™ represents a rotation of fhe vector thrB‘ugh the angle me.
This then gives the vector 0P, and the sum of al\thése vectors is

® o@) = S0P, — OP = 'S X 7.
m=l X

If 2, is 2 root of this equation, then biz.;) = 0 ie, Xz, yoj = {0 as
well as ¥(xq , %o) = 0. Since tg & AX/Y, P is indeterminate at such a
point. N

To investigate the path of thewdurve ® = ¢ in the neighborhood of such a
root z, , we develop g(z) in powers of 2 — 2z :

%

N\ .
g@=g@y+§@m—wo+§WWM@~w-fm
(48)

L D

? il 1 n *
N/ + .59 o)z — @),
Now if 2, .isia’,'\p-fold root of g{z), then g(z;) and the first p — 1 derivatives
o' (20 =\\r =g M) = 0.1tz — 2, = pe'?, g (z) = D', then

ol
s

\ _ Dy saeeen
BN gy = L 77 o'e -

Laup

N
\ " ¥ pis very small, i.e., if we consider a very small eircle about this root,
then the first term of this expansion predominates, and

© o) = Do it = R,
or
0 E=Prfy B=pyth.
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Therefore, if ¢ increases from 0 to 2, & increases by 2xp. The p-fold roet

is then a source point of the line ® = ¢ of 2xp-fold sirength. There are no

source points other than the roots of g(2) == 0, as may be seen if we set
=0

? Therefore, if any region of the complex plane is hounded by a closed

curve, the value of the integral T = 1/2r [ d® over thig curve is equal

to the number of complex roota lying in this region. ~

2. Tf we start with the development- (3}, ¢ \:\
: NS ¢

g(z) — C“rne! ingtan) + C _]fn—-le([(n—l)w F+ax=11 + "' N
(7a) N )
, {«.+ C‘mﬂai-lx) + cﬁw.;
2\
then the first term predominates for sufiiciently large r, i.e, on a circle
with a very large radius, \

oD

(7b) ® = ngl o, .

Since & increases hy 2nw in one ¥otation, » and only # roots of the alge-
braic equation lie inside. Ther‘e»égnube no roots outside, because no matter
how large we choose 7, @ always increases by 2n in traversing the circle
{Gauss’ theorem). It can,gasfly be seen that no toots can lie outside of 4
circle with radius N

(8) ;Rg’ (Cots + Coz 4 - - + C) :Cos
for A\ '

N\

. @ 2 0 = 2”_1(0,.2-1-0,_1 +°';~= o Gu)_

Bﬂ.t“{i;l:\l“z ] g 11 by (S):

< R-C,.

*

Therefore, for z > R, the expression in parentheses in (3) cannot vanish,
-and no root of g(z) can lie outside of this circle.

3. Bince
(10a) X = Rcos & Y = R sin &,

we can determine from the sign changes of X and ¥ how often the argument
$ ncreases by 2. If we consider X and ¥ as functions of ®, then we csn
reg:‘ard —7Y as the derivative of X, If & increases, then we have the fol-
lowing signs in the respective quadrants; ‘
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) 1. 2. 3. 4. 5. 6. -++  Quagrant
X + - - + + -
-Y - - + + - -

A Sturm series is then formed from X, — ¥. The series loses a sign change
whenever X passes through zero with increasing &, and gains a &

change whenever X passes through zero with decreasing &. If, in\the
eircuit of a closed curve in the complex plane, X changes its signd times
in which the above seriea loses a sign change, and m iimes in\w:]iich it
gains a sign change, then the argument increases by (! — m)s, ¥e., in the
interior of a closed curve traversed in counter-clockwise faghion there are

{! — m)/2 roota of the equation g(z} = 0, each root counted according to
its multiplicity. )

4, Since & is approximately ne -+ o for'ciré}e‘s of very large radius,
then on half of such a cireuit, @ increases by,aiw, Such a circle is now divided
by a straight line given in parametric fmjm} 4

(10e) x =¢+ di, y = ¢ + d't.

We consider the region which 48, bounded by the straight line and the
semi-circle—that region whieb 18 traversed in a counter-clockwise direc-
tion, i.e., the region which{lies on the left side of the direction of passage
of the straight Yine. Jisthé Sturm series formed from X and —Y¥ loses !
and gains = sign cha in passing along the straight line, then @ must
increase by (I — #i)#. Therefore
N0
N n l—m

2 2

roots Thust lie in the region on the loft side of the line. Then I — m is the
difieronce in the number of sign changes in the Sturm series for t = —=

*q i=Fw,ort =+ andi= —, aceording as the number of roots
¢n one side or the other of the straight line is sought.

In equations with real coefficients, the computation is simplified if it
is a case of the number of roots on one side of a perpendicular to the real
axis:z = o, y = torz = a -+ 4. This case plays a role in technical problems.
In vibration problems, for example, it is always an important question
as to whether or not the oscillations in the system are damped, i.e., whether
the real parts of all the roots of the algebraic equation determining the
frequency of oscillation are negative. This can be determined by the above
method,
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5. Erzample: The equation
1002 | 63:° - 622° - 7.3z + 06 =10

is obtained for the transverse vibrations of 't.he. airplane considered

by Deimler* (v. 18.4). In this case, the velocity is r = !.Ofnjse:c. Tho

machine is stable if the real parts of the roots are nega.twe, ie, hc

to the left of the imaginary axis z = #. If we substitute this, we obl.Qn
1008 — 63i° — 82 + 7.3 + 06 =0 A

X — 1008 — 620 + 0.6; —Y = 638 — 7.3;{ N

The Sturm series is then formed: AN
ro = 50417 — 06, 2= 6.55, \r:&= 0.6.
From this there results
X et 4 r;\\ > T i
—e + - fT - _
+ + H W+ + +

®

Therefore the number of signf;g'hhnges lost is I — m = 4, so that the

number of roots with negativ&fgél parts is

. O
i.e., the equatio\\has only roots with negative real parts. The vibra-

tions of the airplane are therefore damped.

To detefrhifie how great the damping is, i.e., how large are the
real pgr‘tg'ﬁf the roots, the investigation can be carried out for any
sﬁﬁ&ﬁbf\chosen paralle! to the imaginary axis, e.g., forz = —0.25 4 it.

veperform a Hormner development for £, = —0.25 and substitute,
thep. the Sturm series becomes

&«
S

e N
mJ

Q¥

X = 100¢* — 52251 4+ 2.056

—Y = —37¢ + 18.14¢
r = 3.238 — 2.056
rz = 543t
s = 2.056.

Then
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X e 4 b s 3
- + + + - +.
+ = + - + + +

Since no sign changes are gained or lost, I — m i gzero, i.e., only two
roots lie on the negative side of this line, and the real parts of, thie,
others lie between —(.25 and 0. But the real part of the root op the

left lies near —0.25, Then for Y
z= —026 I it O
we get, just as above, R ™
X = 1006 — 53.42¢* + 2.243.
—¥Y = —418 + 19.19¢ O
72\
o= 6.626 — 2,248\
7= —5.201\
ry = 2.?‘%3: .
From this follows N
‘"‘x"’ -¥ Lt 5 T
~a XN + + | o+ | o+
bt | 4 - + - +
N
Therefoxre\’l..“— m = —4. No roots lie to the left of this line, since

:~\1.

' :\\

,"\T«ﬁe real parts of the first pair of roots can be bounded in a similar

Il—m  n
—-2*—-}-2—“—24'2—0‘

'"\} N ay.

Hurwitz® has devised another criferion for determining whether an
equation with real coefficients has only roots whose real parts are negative.

6. We saw in Sec. 1 of this article that the rocts are the source points
of the lines ® = c. If these lines are drawn at intervals Ac = /4, then
such lines emanate from an !Hold reot. The drawing of these lines is
materially simplified by an eguation machine eonstructed by Themmeck.®
This device permits the operator to read off the vslue ® corresponding to
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each pair of values r, ¢, for 2 = re'*. The principle of the device is based
on the following theorem: :

“If n + 1 vectors OP, , OP,, -+, OP, drawn from a point { have the
resultant vector OP (equation 4), and if n ideniical mass points are
-placed at the points Py , P,, +++ P,, whose center of mass is 5, the three
points O, 8, P are collincar, and the ration O8/0P is always 1/(n 4 1)."

The theorem is obviously true for two vectors OP, and OF,, We place
at S’ the mass 2 whose moment about each axis through ‘@\is equal to
that of & mass 1 at P’. If the mass 1 is put at P, , then themass 2 st ¢”
or 1 at P or 3 at 8" has the same moment about an'axie through O if
08" = 2/3 00" = 1/3 OP', as the masses 1 at P, and' P, or at Py, P,
and P, . The above theorem would then hold fér'3, vectors. In general
the theorem may then be proved by induction. If therefore we place masses
of equal magnitude at the points P, , P, , .4 -.’-‘}P,, , mentioned in 1, with

the coordinates eg-, e,re™”, +- -, cr"e™ thenthe argument & of the eenter
mass § is the same as that of the resuljat/vector g(z) = Re'.
t\ . .
‘z\‘i J’
el
=.C.
E \
K N, Tra. 84 Fra. 85

N/
7. The Thommeck apparatus consists of an axis 4 which ean roil back
and .fg}ﬁh on two horizontal knife edges S8. On this axis, » + 1 hubs
are mounted, each of which bears a cross X of 4 mutually perpendicular

_ ro\ds, which lie in & plane perpendicular to the axis. The first hub is rigidly
. tonnected to the axis, while each succeeding hub ean be rotated through

an angle ¢ with respect to the preceding. This is done by means of a cog-
wheel mechanism, so that the third forms an angle of 2 with the first,
f,he fourth an angle 3¢, and the (n + 1)st the angle ne. This adjustment
is made possible by means of a worm gear on the Iast hub. The others are
then correctly placed by the cogwheel. The whole arrangement must be
carefully assembled so that it is in neutral equilibrium at each position.
Th.ls may be done by using small additional weights. Four equal movable
weights are placed on the four spokes on each hub, one on each Spdke'
These weights are 5o placed on the spokes of the first hub that its center
of mass has, in a suitably chosen scale, the coordinates '
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¢ = A; -+ iB,.
The weights on the second hub have the center of mass
or = A1 + zBl et!c-,
and on the last huab, A
et = A, + 4B, N
wherein the positive real ¢ axis is chosen downward, the positivé ﬁﬁginary
axis to the right, ete. The center of masa of the whole syste?n naturally
assumes the lowest position. The system rolls slong omthé knife edges
until that is the case, i.e., until the angle of the positiye Pagis is & with
respect to the vertical. By means of the worm gea#), the individual hubs
are then rotated through the angles o, 20, - <y n¢ with respect to the
first. Then the ® of the series can be read off Tob the same r and various
values of @. The best method of operation iéto sesk values of ¢ by a con-
tinuous variation, for which the positi\{@}dxis forms the angles & = 0,
+x/4, +x/2, - - with the vertical, sucegssively. The corresponding values
of ¢ are then read off, and the correspénding value of £ is plotted in the
7, ¢ plane at this point. If this j¢ éarried out for several values of r, the
points of the lines & = ¢ areebtained on coneentric circles. Connection
of these points gives an approximate drawing of the lines % = ¢, and the
approximate values of thé'woots can then be found. :
For more precise evaluation of such a root, the equation can be de-
veloped by Horné{;g:méthod about the approximation value. Then, by

mechanical meang, the fines & = ¢ can be determined on concentrie circles
about this point,or the value can be improved by Newton’s method
(ef. 11). A&

(N

8. Riige” has given a graphical method for the approzimate construction
of the'complex roots of & rational integral function with complex or real roots,

Ql)' glz) = es" + T + ezt 6.

He generalized the method of Lill (7.6; 9.5). Just az in this latter method,
the coefficients

{(11a) Cay Cai s Cu-g *** C3, €1, Cy

are added vectorially in the complex plane, and the framework repre-
senting the function is obtained ir the polygon 0C.C,, -+ Co .

To construct the value of the function for 2 = z,, we draw the vector
C.D._. = .2y , obtained by multiplication of the two vectors e, and z, .
Therefore . '

Cn—l -1 = ey = €2 + Crua o

il
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If we carry out the construction in the simplest way by subtraction of
the phase angles and by caleulation with a slide rule of the adjacent sides
of a triangle CoyDp-1Due similar to €,0D.-, , then

Ep-a
Pl »e
-2
Oh. g “enzlo 7\
s ME puz En-z N ’
dn3 R

S0n., 2CnZo MCn "\3\

géCn-s 3 HC) N
s ni d""z"ff: n—§0 W W
/N

tne dpes

L2
CosDhz = s rjﬂn%u3+ Crn—1%0

CraDrz = o120 + Caz == Gucs ete.

Tn this step we deseribe c1rcles “with the same radii sbout all points C, so
that we have only to draw in equal chords with & compass. The Jast length
s (N
z'\\
CoDy = 4y ﬁ@’d"—l‘ Co = Coto + Ottt v F o+ co = gl2o)-
As we have seent in the consideration of the real ease in 7.1:
PN
g(z)jf'"é’(zu) 4 (2 — 2o)(da + doz + a2’ + -0 + Ao + 02)
O\
AN = g + (e — 20,
N “This can also be verified by muliiplication, keeping in mind the value of

'“\; ) d. The framework of the divided difference of the first order, or of the
first different quotient (8.1)

12 )=o) =228 g L apy o b d o

2 =2

is now represented, with another scale of measurement, by the line sequence
DoDy ++- D,;0. If the ratio 0D,.,/0C, is denoted by }, then, by similar
triengles,

(12a) DyorO = Ay 3 DyosDacy = Moy -+ - DDy = My .
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We can again expand a line sequence OF,_.F,_; - - E, over this frame-
work with the same value 2z, , while we have

(12b) AOC.D,., ~ AOD,_\E, ; ~ AE, D, B, _;---, ete.

In this ease,
Dn—l e = Acluzlll ¥
. '\
Dy oEon = Meats + dact) = Mepee N\
(12¢) ' N
D, 2B, 5 = )\(ani + diazo}, ‘\
D, B .= R(anz + doizo + dn—2) = )\Bn‘a.zf M
ete., Le., since ."‘.,\\
9&) = g} + MEe — ) + & — e e + -
R
(13) o\ + e 2™ + 07

= g(zg) + [za2lz — 20) +,ng;z3](z — &)
The line sequence BoF,E, - - - E, 305 then the framework of the function
appeering in the final parenthg:;ia, and we have
(13&) En-—20 = )an ¥ En—sE -2 = 7\29,.-2 e,

If we proceed in thi {;sﬁion, the coefiicients of the development of g(z} -
by powers of z — % can be found graphically. These are

9™ ) B,
{13b) gz :‘dﬁ = (Do, g1(20) = €0 = D;E y Golza) = fo = N

ste. N ﬁ;;}a.iiy the coefficients of a product development ean be found in
ah e;;ﬁr y similar manner.
'"\: »; If a root of such an equation is to be determined, then we first seek
\af value 2, by trial, for which the point representing the function value
g(z,) lies in the neighborhood of € . Then we seek a second value 2 which
gives a point D, for the function value g(z,), which also lies in the vicinity
of ¢, . Now by the method of false position for complex values (18.3),
we get & better valhe 2, if we make AD,DyC; ~ AzZz, , since the neigh-
borhood of » simple roat is mapped conformally to the neighborhood of

Co.
D]E’.ut we can also get a betfer approximation by a transference of New-
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ton’s approximation method for complex roots into graphical form, I z,
lies in the neighborhood of the value of the root 2, then we can terminate
the above development with the linear terms, Then

gE) — g(z) = 1{21) @ — %)
or in vector notation, since D, eoincides with O ,

CoDy _ %y — % _ Cafo_— Gy Dy D,y "\
DE,  » x. D07
A\
ADCoBy ~ AD, ,D,.,0. O

Therefore, if we have found & polygon O, D,,_, , - vy Dy , whose endpoints
He in the neighborhood of C; , then the polygqp’\O,'E 2y Baay i, By,
is constructed to the same value z, . Ther¢igre a point D, _, is obtained
for which the ecorresponding z = C,D._, ; 'QC, gives a better approxims-
tion to the value of the root, if the two tyhﬁ&leﬂ have the relation CoDyHo ~
D, 1D.-10, as is shown in Fig, 87. N\~

3

NS

ie.,

N\NO Fia. 87

H a yalue of the root 2, is found, then all other roots are roots of ¢{z).
The gther roots will therefore be determined on the polygon €o, Dy, -+,
"D, 10 a5 a framework, If the second root has also been found, then
the other roots are also roots of g,(2), and we seek to construct the next
) toot on the polygon Cs , By, Bs, - -+, B, 50, ete. We must therefore keep
\ Y in n'Cund that the points with the index zerc all lie near C, . But, since
the inaceuracy of each root affects the construction of the next, it is advis-
able to improve the approximation values thus found. This should be done
graphically on the framework of the equation originally given, or nu-
merically by iteration or Newton’s method. The details are illustrated in

the following example,

10, Ezample: The roots of the equation
2+ —9DF —(1+3)e+3+2=0
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are to be found. The coefficients give the polygon C,C,CC,0. Tobe
able to draw the similar triangles conveniently, circles are deseribed
about the points €, , ¢4, €, , O with radii of 2-3 em., 30 that the
chords can be drawn with & compass. The ratio 1 D0 | 001 is
caleulated with a slide rule. We then measure the side ¢,D, » and read
off the corresponding length C,D; on the slide rule. We measure off
this length on the free side of the angle OC,D, the angle having been
measured by the compass (D, . Hence the leg does not need to be
drawn. The mark of the point I is sufficient. A first try gives (Fié.\
88) points DiD{D] . In this simple case, we can, with some congsideras

Ca o

tion, find a better point DY, which gives the points D}’ D}. The latter
point lies suﬂic?qiitljr close to €, for us to construct the line sequence
EVE{ also. The new approximation value then lies in the same re-
lation to QI as C, to E{'D{. The new vector polygon 0D,D,C,
actuatlyNeads to the point €, , within the accuracy of the drawing.
Frongﬁh we get as the approximate root
S > ) : 7 = CaDs
3 ~ Cao
The other two roots are also the roots of the equation whose co-
efficients are proportional to the vectors of the polygon oD, D,0.
This line sequence is drawn in Fig. 89. The roots of the equation

qz) =" +dz+d =0

can be constructed with ruler and compass. If we divide D, at R,
then DR : D0 = —d, : 2¢; = p, and if the new unknown 4 = z — p
is introduced, the above equation becomes

= 0.66 — 0.52.
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Caus + 9’1(?) = 0

The value g, (p) can be constructed from the polygon ORE, ; it is equal
to C,R, . The framework of the equation for u can be constructed
from this: it is the polygon RIRO where RIR = C,R, and RO = Dy0

Fia. 89 ‘\

The endpoint S of the solubioR‘pblygon must be so placed that
AO’RS ~ ASRR}, i.e., 8 must licwh the bisector of the angle O'RE;.
In addition, | S| must belthe mean proportional between the
lengths | 'R | and | RR} | We then get the two values of u:

u, = RSYROY,  w. = RS'/RO,
and the value of zmi@m the dotted solution polygon:

s\ I
_ o =071 4 1220
2 = pz\swgo = 0411 052 = 009 + 195
NG~ —0.82 — 1.33; .
£ ' = —— St — 0. .
7{ D8/ D0 044 T 063 2.97 — 0.343¢

PR _

In-Fig. 89, the vector polygon is intentionally drawn in the original

_A\bosition. It is more practical to take 1,0 as the real axis and 0D; 25
- the seale modulus.

’“\\ oo
N,/ Lilvs method, mentioned in 7.6 and 19.5, is contained as a special
case of the above. If a new unknown z = 4» is introduced in the equation
9@ = 42" + @2 + -+ + aiz + a0,
then, under the assumption that all coefficients @ are resl, the vectors of
the equation framework become
s, _?:an—:l > —@p_z, L - B Opayg Tty

i.e., each vector is rotated 90° with respect to the preceding one. This
rotation iz counterclockwise, if we begin with a, , ag in 7.6. For the real
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roots, ¥ = iz becomes purely imaginary so that the points D, - .. D,
lie on the polygon itself, and also form a rectangular polygon.

In equations with real coefficients, the roots either are real or are com-
plex conjugates. In this case, the constriction is simplified, as is shown in
the original work.

11. The approximation values thus found ean now be improved b
Newton’s method for one variable, beeause the proof of the convergehge
in 18.11 helds without any assumption on the real nature of the fusictions
or variables. The process converges by 18(27) if K

] 9@ ¢"' ()
Lo’}

Horner's scheme can be used for the caleulation of '9@'\)\311& gz}, eg.,
for the first root of the example in See. 10, ’

< I. N

1 S —f — 3 x\\ 3+ 2
0.56 — 0.52¢ 0.874 — 08130 & &7 ~0.513 + 0.476¢
—0.790 — 0.851,0 ) —2.424 — 2.613%
1 1.56 — 1.5% —0.916 — 4.8624, [ 0083~ 0.1351 = 5(z)
0.56 — 0.52 +1.187 — 1302:
—1.061 11421
1 2.32 — 2.04¢ } —6.790. 6.906i = g'(z)
0.56 — 0.52( " T
1 12,68 — 2.560 = g"{z}/2.
Here \\ -

_ | (0.063 £0.135:)(2.68 — 2.56:)-2 |
m o= 6=0.790 — 6.9066)° |

> _ | =0:354 — 1.046: |
\1"} ’ = | 47069 - 10.9115

(\ .
T];:s process is then certainly convergent and

4 0\’ > 3
o) (0.063 — 0.1350)(0.790 — 6.9061) _
VA= + 48317

*Therefore Z = 0.542 — 0.531z. The value of the function belonging
to this argument is :

= (.023.

—0.0183 — 0.0112¢.

g(® = +0.0020 — 0.00064,

If this is not sufficicnt, the same celculation can be performed a
second time, A second correction is then obtained

z = —0.000056 — 0.00030:.
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. Graeffe’s Method. Q)

1. While the methods mentmned go far permit us to calculaﬁe\only one
of the roots of an equatlon, a method has been given md&pendently by
Dandelin,' Lobachevsky,” and Graeffe’ for algebraic equations with real
coefficients, which ylelds approximate values for aZE reaI and complex roots
stmulianeously.

The method ean be analyzed most simply fot fh:e ease that all the rools
of the equation

O
63 0@ = aa" + a,_ 2™ + -'\4 ax -+ ay =0

are real, and are different from one agether in absolute value. Then
@ l2:] > [za] 2N @] -+ > |zl

The problem js to produceainew equation from the given equations,
whose roots are the squares.8fithe roots of the given equation. From this
we form a new equation/whose roots are the squares of the roots of the
equation just obtained and hence the fourth power of the roots of the
given equation, et%\?‘he difference between the individual powers of the
roots of the original‘equation naturally becomes greater with the increase
of the exponent) \Finally, if we proceed with the method given above, we
get an equa.t.m‘n

0(3) . \2\ "+ f‘n—‘lu -t "-F cee rsuz +rnu+r=0

in “(]:Qh the difference between the roots is so great that —r,_,/r. should
equalthe sum of the roots, by Vieta’s root theorem, and differs from the
h}rgeat root only by a very small fraction of its value. In the same way,

) Fas/Ty , which is equal to the sum of all possible products of pairs of roots,
differs from the produet of the two largest roois by a relatively emall
value, ete. With further approximstion, we ean set

—_ 1",,_,_ | T
(4) = - “;’"‘, WUy = 2 2; Uy rUa s = — _!.‘_g;
a Ta Ty
or
B w = ~ D=t = _Tez Tas
up = - g = Ty
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The given equation is then broken up into n equations
8) 7w A4 Tars =0 facsu A oy = 0;  ToogU b Tyoy = 0;  ee

whose roots are known powers of the roots of the given equation, with good
appraximation. The desired rocts can then he obtained from these powers,
except for the sign.

2. To form the equation whose roots are the squares of the roots of the.gifen
equation, we must observe that if we replace by —z in the given equation,
the roots of this new equat.ion are equal in absolute value to the Toots of
the given equation. The signs of the roots, however, are oppofite: Ia the
resultant equation, the coefficients of the odd powers all have opposite
signs to those in the gwen equation. We have therefore t.he two equations

T o T S +f16?\+au =0
] 4

B2 — G @™ — - azx\ZF ‘x4 ay = 0,
or, if we express the two equations in produ

a,,‘(m - m:l)(x - xﬂ)) "7 ':3" - xﬂ} = 01
)] \/
a.(z + o)z + :cz)s Cy (x +z) = 0.

If these two equations are multiphed together, we obtain an equation of
nth degree in 2{z = 2} "\ _
{9 allz — x’)“(a'\’ Tz —x3) - & — D) = 0.

The roots of this e s@on are equal to the squares of the roots of the
given equation. The‘}%m]tlpllcatmn is best carried out in the form of a
table which is written out here for the case of the equation of fourth degree:

\X
AN z & & z g s e

\{“\ I Equation @ a4y G a, o

R : II Equation a, —a; az —-a, o

~\ D" @ - & —& ta

N +2a.a;, — 20,8, + 204,
+ 2z
2. I Equation &, -5 b —h be .
II Egquation b, +by b +h by

Y
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The b’s are the sums of the vertical columns; b, is the coefficient of #* =
z*, —b, of 2* = a° ete. In equations of higher degree, the number of tems
in a column hecomes correspondingly greater. The b’s are the coefficients
of the equation whose roots are 21 , 23, - -+ , 25 . Since the roots of this
equation are even powers of the corresponding roots of the original equa-
tion, they are eertainly positive, so that the 2nd, 4th, .- . coefficients of
the equation must be negative. We proceed with this equation as with

the first, etc. The details are best llustrated by the example belog,
3. Exomple: We seek the roots of the equation O
7NN *

gla) = a* +52° — 3z — 1 =0, \
The following table, which is prepared with ~t,ixe.‘i.tse of four place
tables of squares, is self-explanatory. Instead“of writing four place
numbers, the so-called normal values are’written (Schneider, 1825);
ie., the first digit is followed by a decimial and the exponent of the
power of ten with which this norm*{g\ Value is to be multiplied is

written as a superscript. S\

1. L 1 450 -3 -1
. 1 %8 -3 +1
LN a2 +0.9t -1
S — +11
2. 4N 1 -3 +1.9 -1
LA 1 431 +1.9 +1
\\

AN 1 —9s1® +3.612 -1

+0.38 —0.62?

AX

'j\u' 4 I 1 —gog +2.09 -1
A& Il. 1 4993 +2.992 +1
‘,'s’\ 1 . —8510 +8.940° -1

K \\ +0.0065 —0.1854

mw

< \ 8 L 1 —851% +8.755¢ -1
1I. 1 +8.513° +8.7554 +1
1 —7.247 +7.663 -1

+0.002

1 —7.a24m +7.663 -1.

fl‘he doubled p}'Dducts always become smaller and can be neglected
in the caleulation of the equation which has as roots the sixteenth
powers of the roots of the given equation. The criterion of this is
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that within the digits written out, the summands, except those which
contgin the Iargest root, are negligible. This is easily seen from the
following consideration.

If, for example, the equation is of the Sth power,

(10} dyg" — do?” + diz — dy = 0,

the apprbximate values for the roots, calculated by Graeffe’s method,
are

(8 (8 (O
If we muliiply this equa.t-ibn by , ‘ by

(2)  dltdd detd=0 0 )

to get the equation for the sixteenth power, ther wé’&:t

13 da’® — da® + diu — dﬁxfi\ﬂ;

sinee the doubled producis no longer aﬁeﬁt ‘the digits shown., From
this equation we obtain the approximation values for the roots of
the given equation: g W

( g)um R é;zjula (d:)uw
(14) I = d_§ ] x‘i :'_, \ "d_g ) Ty = d_f

" These are the same valuess which are obtained from the equation for
the 8th power. Therefofest the doubled products no longer affect
the written digits pf,the squares in the first series of the columns,
there is no point in%»a}rrying the ealeulations any further.

The same schéme of caleulation is used if we want to carry through
the caleulationdwith a slide rule or caleulating machine. When log-
arithms ar«s\:ué;ed, we employ a similar arrangement, in which the
loga;'ith;nélal‘c written in place of the numbers, and the addition or
subtrskti'on of two logarithms is carried out with Gaussian log-

arithms.
NN

4 ~\' ¢
“\\“4. The calculation of the roats in the above example with four place
\ 'logari thms is most easily done by the following scheme:

l A CAldG
log 1 = 0.0000
0.1156 — 10 03822 — 1 {2 | = 0.2411
log 7.663° = 9.8844
0.0243 — 2 0.8765 — 1 fas| = 0.7525
log 7.247 = 11.8601
11.860 0.7413 fa | = 5.51L

jog ¥ = 0.0000
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A separate caleulation is required to defermine the signs. It is gimplest
to calculate the value of the funetion corresponding to the equation
for geveral values of z which lie between the roots. We find -

gl—w) = —w, g(=1)=+6, 9(—%)=+%,

9(0)- = ~1, g+ =+2, g+=)=+=. N

Therefore one root lies between — o and —1, a second between'=0.5
and 0, and the third between 0 and -1. This is only possible it

5 = —5511, @ = +0.7525, m = ~Q.3411

For prbof of the accuracy obtained, we can calctllgité}the corrections
to be added to the roots, by means of Home{a #cheme (cf. 19.1).
We find O

Az, = 40.0004; Az, = +0.000013; Az = —0.000011.

The corrections therefore affect only gh{ézf\rJurtH decimal place.

5. The course of caloulation is soméwhat different if the equation has

groups of reots of nearly the same absolute value or pairs of complex eon-
jugate roots whose absolute valugiare of course equal.‘ A complete separa-
tion into linear equations is noj;fpdssible by the operation described above.
In the second case, for example, the complex roots are determined from
quadratic equations, “{hjze linear equations are again obtained for single

roots.

6. The general ijroof will not be given here. Instesd, we will work

through one ezafple. We take the equation

DT Pt s s - 10=0
and usﬁhé calculation scheme given in See. 2:

R\ i
N 1. L 1 -4 +5 +5 -10
NS IL. 1 44 +5 ~5 =10
1 —Le +2.51 —~2.5! +1

+1 +41 —10

—21

2. L 1 —(.61 +4.51 —1.252 +12
Ir. 1 +08 +4.5 +1.25° +1?
t -3 +2.025 —1.563+ i

+91 —1.5 +0.94

+-0.23
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1. 1. 1 5.4t -+7.25¢ —§.63 414
i 1 4 +7.250 46.63 +14
i —zp16 +5.256%  —43987  L1°

+1.45 +7.0605 41457

—+0.25
8. I 1. 1466 412628 20467 418
. 1 1466 412625 420467 18
1 —2.1496 +1593  —8.6Tou 1t
+2.524¢ —0.086m  42.52444 O\
L™

15, I. 1 3.75% 415071 —6.1551 ,“}11:
I 1 —37s F1.5072 461551 W\ B
R T

+30.141 .. +0301

.Q.‘

32 L 1 2873 2271l Vs 122
IL 1 -2873% 4220080 3487 1
1 8254 4BIsRe - 1216w 1

fasaom N +0.005%
64. 1 —3A2¢ 451586 12118 1%,

In the equation whose ro}ts are the 32nd powers of the roots of the
given equation, the@nffuence of the products on the last three terms
is already very sthallMHence in a further development of the scheme
they vanish completely. In the second term, on the other hand, no
decrease is obgervable in the influence of the producis. Now the
equation D@ two complex roots, as can be determined by the rules
given 4 i'zkéiﬁer articles. Therefore a further development of the
schenfd\is unnecessary. We now calculate the absolute value of the
realtdoots by use of four place logarithms, according to the scheme
... &iven in Sec. 4, and also the value of the constant term of the quad-
yatic equation, which is equal to the product of the two complex
conjugates. ’

A A4 i
log 1% = 64,6000
14.9168 0.0763 |2 | = 1194
log 1.2115* = 59.0832
. 10.3708 0.1620 | %2 | = 1.452
log 6.158% = 48.7124
48.7124 Q.7611 r* = 5.769.

log 1 = 0.6000
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To determiné the signs of the two real roots, we caleulate the value
of the function, whose roots we seek, for a value of x which lies be-
tween their absolute values, for example, z = 1.3:

1 —4 +5 +8 -10
1.3 —3.581 +1.64 + §.02
~2.7 +1.49 +6.94 - 0.98, ~
Since the function is positive forz = —« andz = + 8 +hut negative
for z = 0, the smaller root must be negative, the larg;er positive, ie,
= —1. 194 Ty = —}—1452

Now the factor of #* in the equation is equal to the negative sum
of the roots. Therefore, if the two complex v\oqts are u = 4y, then

o+ a+ 2u =4 = 0258 %2 u= L87L
We calculate v from , x',\\'

W

~
= (* — )" = X569 — 3.501)"* = 1.506.
The two complex roots arg.tﬁer;

&, = L1871 = 1.506i.

If these values are corrected by Newton’s approximation method
(19.1 and 21.1}},>vve get &3 the new approximation values

7 = — 1.&&0& z = 145179, .. = 1.87113 + 1.50589%.

Ifv = 0 ‘then u = r, so that there are two equal roots {or two with
opp({;lte signs}.

through treatment of the Gracffe method is given by Encke.®

\‘Polya® has shown that this can also be used for the approximate calculs-
«%ion of the roots of any power series. We shall not discuss this here. Like-
'wise we shall only mention other methods for the approximate caleulation
of the roots of equations, such as the method of Bernoulli” for the caloula-
tion of the roots with the largest and smallest absolute values, that of .
Jacobi® in the case that several roots are present with the same maximum
absolute value, that of Lagrange® which gives the approximation value in
the form of a continued fraction, also the method of Laguerre'® which is
to be developed with invariant series methods, and finally the formula
of Whittaker" which gives a series development for the smaliest root,
whose individual ferms are quotients of determinants. These determinants
are formed by the coefficients of the equations,
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4
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A\
23. Linear Equations with Seve@?ﬂ'nknowns.

1. There are two important methods foi'tjle numerical solution of =
linear equations with n unknowns; first, the subtraction method in the form
which Gauss gave for the solution of phe normal equations in the caleula-
tion of errors by the method of leash dquares, and second, the substituiion
method, in which the unknown frent*one equation is expressed as a function
of the others and substitutiphNis then made in the other equations. One
root after another is the ~e¥imina.ted, i.e, n equations with » unknowns
are converted to n —{}eqhations with n — 1 unknowns, these in turn
become n — 2 equati(ﬁ with n — 2 unknowns, ete, Since this method
is the same for all.gasés, we will only develop the case of three equations
with three unknowns. We write the equations in the form

O
O aum + ante + G + o =0,

1) a8 Gy + Bog%s + Gaektz + &2 = 0,
@asZ: + Gas¥z + Gaa®s - 5 = 0.

If the firsé equation is multiplied with as;/a,, (this can be done with one
setting of a slide rule, or a single division with the ealculating machine,
setting up the quotient in the set up mechanism and multiplying by the
separate coefficients of the first equation), and the result subtracted from
the second equation, and if the first equation is also multiplied by (N
and the result subtracted from the third equation, then the terms in
drop out, and there remaing
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w

= o ) ( - ) =
_— G — —— O3 )% a; — a)=10
(ﬂzs a Glz)xz + ( 2] P 15 % + 2 an 1 s

11

2
g3 s =

(ﬂss - 2"_‘3 an)xz + (ass - E&i als)xs + (ﬂs - a_j G1) = 0.

If we could cancel subseripts, the two swmmands in each bracket Kiuld
have the same indices. For abbreviation then, we write the equations
(2) in the form . _ ’.\:\

AN

ahate + Gtz + as 0, "

&Y _ N
ahets + ajsts + af = 0. 5
..,\\

If the first equation is now pultiplied by s/ alyand the result subtracied

from the first equation, then ) \\
' .,'\“‘ r

) (a;s - 9? aés)ze + (\35*-— a—f? aé) =0,
2z .\, 2%

where, after the second eliquaj:idﬁ, we place two primes on the coeffi-
cients: &N

™,
e

(5) A alle, + af = 0.

AN
The value zy is cichlé.ted from this equation. The other two unknowns
can be caleulated by substitution. For this purpose, an equation is chosen
from each groupe.g.,
P,
0\ ks + a’ =0,

(62’\\" i s + gz =+ a; =0,

*

Q1a¥z + Ci2®r + ANt + &, = 0.

This is & reduced equation system, from which, starting with the first
equation, the individual unknowns cen be caleulated, one after the other.
We also substitute in all the equations of the group so 83 to have a check
on the accuracy.

Possible errors of ealeulation can also be avoided if the second and third
terms of the given equation are exchanged in the caleulation of z, , azd
the first and third in the ealeulation of %, . The same glimination process
iz then earried out as above.

A scheme for the above operations would appear as follows, where un-
necessary writing of the variables is avoided: . )
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I Za Za 8
@1 5% 15 ay & o
Iz 2% L2 2%.) i1z Ba 2133
(L2 dqy [+ 7Y Oy 2
(5T — fha - a, S & o N\
L33 a; @i [ 3
N
. LSRN N
@1 [ [+ 24 i 83 N
\
s, a3, Uax a
= fia — 3 — ‘q?i 8 3;1(= S - L
11 LLIB L3P 12 2 LR
{ &
, \
U2z Qza az 84 a}
' ’ , » ::\\' Ghaka
Qaz Qza fa 8\ &
’ ’ N/ a3’
Gaz . Qa2 "Gz , r
, G M N7, B2 = _ %
Aan Qas |\ Qag £y = .
~ L L]
9 rr
\ g @z
ads ai’ L = — =
& d3a

The s column. serves as':s:a,t\controi. The value s, should be the sum of
the coefficients of the ?btih equation. It is easily verified that if the same
operations are undertaken with these sums as with the corresponding
equations, the surd’of the coefficients of the above equations is always
obtamed, e.g.{t\~,"

NY an _ iz ( G
8%\?\52 - a_”& = (am - -‘.I_HG“ + | 3a — P 2z
@ N
‘"‘:..\ +(023_E§lals)+(ﬂz_@al)=0+ﬂ;2+aﬁgs+a;-
\ 3 @1 3%

If the caleutation operations for the sums are carried out in the above
table, then & rather certain check is had on the caleulations. The scheme
can be shortenad somewhat if we omit the quantities af; , af , ete., and
form Gas — (Ga/@1s) Gy — (ahs/ats) afa direcily. Still, the certainty of
the caleulation suffers if such is done.’

2. Example: A tractive foree of one ton pulls in the direction ST
on & triple jack, whose point lies 6 m. above the surface, and the base
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points of which have the positions shown in Fig. 90. How great are
A the tensions in the different members?
The rod lengths are AS = 11, B§ =9,

08 = 7, and the cable length ST s
(77)"2. If the tensions in the beams are
denoted by {1 , {» and ¢, and the equi-
librium conditions for the com tein

the three directions of the coCrdinate
axes are written down, w€ obtain the

Tia. 90 three equations - £\
- 9 3 3 4 &N\
z Directlon: 11 o - §§'2 —7 t + W'
..‘\\
= 08187 — 03335 0.4205, + 0.456 =0,
N

.2 6, 2.8 5
n Direction: —77 &1 t+96~ ? 3'?:\4' an'ye

— —0uB3y, + 0.667¢, — 0.286¢ + 0.570 = 0.

N

e 6. 8, , 6 6
y Directaon: +ﬁ.¥“‘ = 5 &+ 7 &+ 27—7);—/2
\\ < — 10.545F, + 0.667¢; + 0.8578: + 0.684 = 0.

N\

In this gase; o fension in the beams is taken as positive. If we multiply
by 1000°to save writing, the scheme becomes

L

’x‘ J i 2 Is 8
1 818 —333 —420 456 512 456
I —182 667 —286 b&s70| ‘769 | —156.5
Ia 4+ 74 4 96 —101 | —113 | +2984
i1 | +545 @87 857 e84 ]| 2753 597.9
Ik —9292 —286 4304 | 341 o = =073
(Comprcssion}
IV= II — Ia 593 —382 671 | 882 671
—139.4
V = III ~ Ib 886 1143 3s0 | 2412
IVa —573 1006 | 1322 53160, = —0:808
{Compression}
Vi=V -1Va 1716 —626 | 1090 g5 = +0.365
(Tension}.
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Instead of caleulating the values of {; and {, by substitution, as is
done in the final column, it is better to repeat the calculatim; with
a resrrangement of the eolumns, We interchange the first and third
columns, and write the equations in reverse order for a reason still
to be explained:

;3 ;2 S'x 8

HI 856 667 545 584 2753 O
11 —286 667 182 570 769 O\
IiTa 223 —i82 -2 ! - 919 £\
)\
I 420 333 818 456 512 £
b —333  —272 342 | —1376/
. Y
v 800 0 798 Y688 | o = —0.807
1888 .
7 \\0‘
v 0 1060 79{’;\ | = —0732

In this case {; is obiained immediate;lytfrbm IV, The small differences
are reduced to the inaceuracy of slide rule caleulations. Naturally,
these will be so much smaller thé'smaller are the results of the multi-
plication, ie., the quantities‘tbli'é subtracted, since the relative errors
(with a slide rule) are thessame (3.11). Tt is advisable {and this is
the basis of the abovedihterchanges) to use that equation for the
transformation a-ndoguﬁtra.ction in which the unknown to be elimi-
nated has the lar toefficient.

The same scheme is used for operations with a caleulating machine,
in which the.a’cimiracy ig limited only by the number of digits on the
machine. The” caleulation can also be carried out in this manmer
with lo ix\ﬁhms. In this ease the Gaussian logarithms are used for
addij\ién and subtraction purposes (4.7 and Art. 19}

2 S

3. 'It;"is of importance, especially for the method of least squares, that
&hé ,fnllowing problem ean be solved by the above seheme: we are to cal-

\cuia.te the value U of a linear form of n variables, which this form lakes on

Jor the n.roots of a system of n linear equations. We shall write out the scheme

for only two unknovwns, since the scheme for an arbitrary number of un-
lue of U/ is to be caleulated from

knowns is entirely similar. The va
@8 + GeTz + e, =0,
8) &y + 2Ty + @z = 0,

@z -+ Uar®e + e = U,
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troduce another check. In addition to the sums & of the rows,

We now in
we form the sums o of the columns, and set S s=3, ¢ =2 Theschems
ia then .
= Ty &
I 2y ¢ Bz ¢ [12F) O 1
""""" | [—]
1 - N
11 [ TR Boy ——— oz 6———{ A
: %
' a2 o N\ [: 79
Ia : —4a — a3\ -8
H [i il 2 & “"(. a1 !
AN
III gy gy W ez —— &
a
Ib b
ayy
v o . \o» o3 z
.\
Ic N g %, o,
* .’.Q . 11 i 2, i E LT !
V=1II-1Ia ~< .E ais ala &
% W oo oo i
VI =111 — Ib\\ al, : al &
» i al al
Va s { Baz [T
\/ i asa &
O i g i 48 *
x~\\"' R e
VHEIV - e ol ol . 7
N\ , ,
Vb oo LA
A az, %5 L8
m\.7. 22 &z2
\ \™
VIII = VI - Va, £t ’r
I35 8,
IX = VII — Vb ol 5

Here each # is the sum of the coeflicients directly above it; for example,

)
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a
+ (f‘aa - alz) = a3y fl;z .
@y,
From this it follows as a final check that
aff = o = & = >
H

and these values are equal to the desired value U if the correet values for
z; and . are substituted. Because the left side of the eguation JII has the
value U, while that of the equation I, has the value zero, subtraction of
the latter does not change the value of I7. The value of the Ieft side of
V1is then U, and since the value of Va is zero, the left side.of VIII must
also be U, upon subtraction of Va: a3
X

(10) U=alf=d) =8 =2".)

In many cases we deal with the co-ealled symmstric equations, in which
the coefficients symumetric to the main diagonal have the same value.
Then \%

AN\
(11) @iz = 8z, ; Gy = a1 G2 FNban, €lC; =1, 8 =0

ete., In this case, the equa.t.iong~ iig}iieh are obtained by elimination are
also syrametric; for example, ..

"\
n. a
(12) ﬂéﬁ::%\";:am:a:a“‘ﬁﬂm“ﬂéta-

We can then omit’tlié parts of the above scheme lying to the Ieft, under
the dotted hr;({ :The pattern of the equations used is indicated by the
ATTOWS. &

These méaiods find their most important application in the ealeulation
of apprdgtmating curves. Some discussions of the subject are found in
Art Z5%nd Art. 27, where an example is worked out. For a complete;
im‘as}igation of this field, the reader is referred to the extensive litera.t.u.re.

W};’e caleulations above find another application in the rather eonvenient
calculation of determinanis,

4. How great are the errors, in the most unfavorable case, of the soluba:om
Z, -~ 3., if the coefficients and constants of the equaiions possess various
errors? If the coefficients a,, have the errors —A,, , the constants @ the
errors — A, , then the unknowns z, will have the errors ~¢ . While the
inexact values are determined from the equations
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@ty + sz A et Gty +a =9

ﬁz1£1+aszxz+ +a2n3u+ﬂs = 0,

(13)
anlxlll_a'nkiﬁ_l' ceo o Ouae t+ s =0,
the correct values must satisfy the equations ~
o + A + &) + (@ + Ay + €) + < ) \

+ (@ + A + @) £ =0,

(o2 + Ap ) -+ &) + {2 + BAag)r + &) + ':“%.f;'

(14) + (ah + Ah)(‘z&:\_{:\’en) + a: + 4 = 0,

{am + ANz + ex'} + (ans + A‘n!}%"“;} 52) + .-
+ @ A, 4 &) + .t 8 =0,

If we neglect the produets A-¢ a;;dﬁ,cahsider the equations (13), then we
can estimate the errors of the unkibwns from the equations

ad

Qg + ez + oo S8

e + (Bt B+ Aum o+ Auzl =0,

+ )
A€ + azzég\* e
O o Gaen & [Ba + Ants + Assa + 0+ Awm] =0

(15) \&"
\"Y
' ‘,&mﬁ + togge + <o
) b Gt + (B + Bt + Apas + oo+ Auita] =0

'\
<\; JThis is the same scheme which was used for the calculation of the 2,
except that the constants are different, and that, in getting upper limits
for the errors, we add instead of subtracting in the case of the constants,
while for the coefficients we take the absolute value and always subtract.

5, Example: We take the equations from the example in Sec. 2,
in which the errots of the constants and the coefficients may be no
lerger than one half unit in the last place. Then we so choose the
signs of the errors that the bracketed terms of the above equations
reach their maximum values. The scheme then becomes
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o €z £3
813 333 429 1.406
182 667 286 1.496
74 96 0.333
545 667 857 1.406
292 286 0.998 QY
N
593 199 1.829 : o\
Y
445 571 2.494 «
143 1.373 A3
N
428 3.867 eag.aciau.
In the same way we calculate upper limits forthe errors of the other
unknowns: N
857 867 545 296
286 667 182 | 1496
222 18208 7 0.500
420 333 o 618 1.496
333 273 0.750
AdS, 0 1.996 £<0.0045
\\0 545 2.246.  <0.0041.

The percentage! érrors ean then be no greater than
,@é% fory,, O05%forfa, 25%forfs.”

A g{ﬁéﬁl formula for the upper limit of the error of the unknown,
due/te errors in the coefficients, has been given by Blumenthal.? For
nihérical caleulations, the limits obtained above are usnally too large,

i “But the estimates can be of use in purely theoretical considerations,

9 “as the given examples show.

6. In technical work, linear equations ocour particularly in structural
mechanics. For example, in the investigation of a framework or of & cross-
beam for various loads, we frequently have the case that the coefficients
of the ynknowns determined by the structure remain unchanged, “:hﬂe
we must substitute various vajues for the constant term, a8 determined
by the loads. These latter terms are therefore designated by load numbers,
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If we have a large number of such groups of equations, then the following
procedure is advisable. We set all the constants equal to zero except
for a, , to which is given the value L. The values of x obtained are denoted
by z{ where « has the values 1 to n. Then we set all the constants except
a, equal to zero, and give @, the value 1. The solutions of the system of
equations are then designated by z.”, etc. The calculation is always
carried out by means of the following scheme, in which only the last
column changes each time. If a, has the value g, instead of I, then the
solutions would be @, times as great. Since we are dealing with linear
equations,.these solutions could be superimposed. The genéral solution

for the system of equations with constant terme a, - - - @, would‘then be
. 9
(16) 2, = 2 aas’. N
=1

7

& /
7. The determination of the unknowns from’{ingar equations can alse be
earried out graphically®. In this, eonatructio{ of ‘expressions of the form

an ¥ = a;, + anz + Gmf?'\;k\' AR ol T

is necessary. We first construct a graph for such an expression. In this
graph we place the lengths e, , a,, AGMN, v+, @, ON 2 straight line, perhaps.
the z axis, beginning from & point' 0, and measured in the direction de-
termined by their signs. T}lc.éftarting point of each length is set at the

4

!
e
el BN
/,’ ~ . {’/Mé
Naa A"
A Bee Bpa Ak [Atslies
A
ags, B patmm Ay I
=2, A
2
=E.

N\ Fia. 91
d \ . .
eg¢pornt of the previous one, as is shown in Fig. 91. Here only a, i
o~negative. We draw parallels to the y axis through the endpoints of these

"\ Mengths. On the y axis we draw, from the origin, the lengths 1,2y, 22, ** " »

for which we want to construct the value of the above linear form. It is
not necessary that the scale modulus used here be the same as the one
usf';d for the ¢ axis. Lines are drawn connecting these points with the
point —1 on the z axis, the pole P. To the individual rays of this pencil
of guxi:'hng lines, we draw parallels, starting from the origin, in each corre-
sponding section of the framework of the linear form. 'I'iien 04, || Py
then a.4; = a;, measured in the units of the y axis. Furthermore, 4,44, ||

Pz, , and therefore a,,4,, = & + @47, , ete. The length
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ardy = a + an® + apr + --- + @25

is cut off on the (¢ 4+ 1)st y-parallel. If y = 0, i.e, if the £, have values
which satisfy the equation

{18) &, + anx + apx: + oo+ + apz, =0,

then the endpoint of the polygon with the connecting points A4 must lie
on the z axis, indeed at a;, . IT the x,, should therefore be solutions of @ \
equations with n unknowns, we have the following result, The perallels
to the corresponding straight lines of the pencil of rays must give a polygén,
in each of the n schemes of the n equations, the endpoint 4., ot\whmh
falls on the x axis at the point a,, of the scheme concerned. . ~.
If is easy to aceomplish this for a system of reduced eqwzt’tms, such as
we get by the elimination of a system of ordinary equatlot{s\ Aor exsmple,
we would have for three unknowns,

0=a + aut, NV
(19) 0= [ 53 + oy g + (1221:2‘:‘ ~~:
0 =03 + aa® + d32‘x2 4= Qaals .

Here the direction of z, can he found from the scheme of the first equation,

7 A

Fro. 92

the direction of x, from the second scheme, etc., as can be seen from
Fig. 92, in which the three equations
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0+ 2+ 32,
(19a) 0 =144 4z, + 32,
0 = 1.5+ 4.5z, + 4x, — 3z,

are represented. It is therefore possible, by graphical elimination, fo
transfer an arbitrary system of equations into a system of reldted equa-
tions. The unknowns can easily be found from these. From the drawing
we read off (D))
. 7'\
T = _0-667; Xy = 0.556; g =.‘0‘}240.

8. Van den Berg® has given a graphical el{zﬁ\i’ﬁ.{iﬁm method. This. per-
mits the construction of the # — 1 frameworks of n — 1 equations with
n — 1 unknowns from n frameworks with W' equations for » unknowns,
If we have, for example, the schemes of; ‘I:h\e' two equations

a, +anm + a,g;a:g’% v Gz, =0
(20)

G + @ity ‘f::.&;;’.‘zxs + ot o =0
plotted on lines parallel to\the z axis, if the points a, and a,; with the

A &y %y %
? :\a‘ r" _\\ i ‘T ﬁf
AN / ./
L] ’
Y N/ f
N R B s
b P, w \‘ i \\‘r' ”f
A\’ ! I ! ™ f
> B LE_ ia ri = i
y '.\ - i3 Yy & 1, % _‘H‘w’
4 "\ W
\ ¥/ Fia.
'\\ 23

Seorresponding indices £ are connected together, and finally, if an z-parallel

NS

is drawn, on which the connecting lines cut segments of length

r t
(ma') am;amiya;S,"'sa;nr

then we ean caleulate the lengths of these segments from the proportion

(20b) (@ns — ane) :(ah; — ar) = 0,04 : 050, = ).
This gives
(21) al; = Gmi -+ Ay,

142
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If we now draw the z-parallel through the intersection of two connecting
lines, then the values of a,; are zero, i.e., we have A = — e/, ; there-
fore the segments cut off on this « parallel become
22) Gur — 2L gy = al,

LA
except for a constant factor. But these are the coefficients which are obs,
tained from the first elimination in the Gaussian scheme. The coefficionts
of z, become zero if we draw the parallels all through the correspoimsljng
points of intersection. Therefore this unknown is eliminated. From these
# — 1 equation frameworks, we can produce n — 2 schemes 87 n — 2
unknowns, ete. If we then choose one scheme from each,group, then we
have a system of n related equations, from which we ‘determine the
unknowns by the method explained in the preceding'settion.

In order to obtain satisfactory intercepts in the elimination process,
we observe that each of the equations can be ;n@lﬁp]ied by an arbitrary
positive or negative number, that the origin{ ¢an be arbitrarily chosen,
and finally, that the distance hetween thew-parallels can be chosen ap-
propriately. ) W

a1 Az

Fra. 94
9. Ezample: As an example, we consider (Fig. 94) the three equa-

tions set forth in Sec. 2. With a suitable choice of the origin, the
schemes of the three equations



(228) II. 570 — 286¢, - 6678 — 1826,

{[1. 684 -+ 857fs + 6678 + 5450,

are drawn, one under the other, ab equal distances. Corre
points of I-TJII and’ I1-11I are cennected, and the z-parallels |
are so placed that the coefficients of x5 become zerg-For thi
the z-parallel 11’ also goes through the intersection of-4he Ii
and @..fa; 50 that the coefficient of z, in this éguation i
and 50 that a.as , thslss aNd Gtz £O throdghone point,
the equation whose scheme is I, the goefficients of z, &1
zero. Tt is a special advantage of thé@naphical method th
caleulation as the above is easier thazhthe calculation in the
solution of the equations. We fingh{y/= —0.896 in the adjac
by means of the dotted line O fd3, above II”; through the
OAlal, over T, we find §, 3+0.730. Finally, we draw the
sides OA, and @z 4244, in'the frame of the equation IIT,
the directions which have'been found. The final line Asdas
direction for {5 = 0.365. The values agree very well with
culated in See. 2-3f'the accuracy of the values found by th
is not sufficiefit, we can produce new equatjons, suitabl
corrections {jt)st as is done in the error considerations in Sec
equation%vae exactly the same schemes, except for the

small vg.l es a; ; we can then use the same scheme for the
calenlwtion, except that we measure the value g, in a se
i€\D0 times greater. The corrections which are then found

{divided by one hundred.

o X
{3\

§ 10. Another method for the construction of the solutions of n i
tions with n unknowns from two solutions of n — 1 equations withn
has beén given by Massan.® For his construction, we need the
theorem: '

If we have any system &, , 4z, +*+ , %, of solutions (of which
an infinite number) of n — 1 equations

@ b anz btz + o0 et = 0,

&
* '0
.

Fe 2 ogors b s 4+ e A gor. = 0,
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and construct two linear forms of these n quantities

X =ba + bazs + --- + butn |
(24)

Y =0z + 6z + -+ 4 can,
then there exists the linear relation among these quantities

{(25) X4+ mY 4 n=0. N\
This is seen immediately, if we observe that the determinant O\
¢\
_X b1 bﬂ e b,, '\'\ ’
-¥ [N e aae ¢ ( ™
&6
(26) A= & @11 139 v “Gn =0
- . . . - - 0 '3"\\' .
[ .Y L ax—l.ﬂz"~"“ Gni,n

must be zero in order that the n + {e’qué.tions {23) and (24) be satisfied
for the unknowns. Besides, it is seen\fhat the quantities I and m are inde-

pendent of the constants @, , + 4\ }%@.—1 . If we now take the seheme of
the nth equation L
(20 a, + an,xi:c«l\k Guo®s + * 00t Baala = 0

€ )

and construct on this<the polygon with n directions z, , W]lif!h. sat._isfy
the » — 1 equations\(23}, then the (¢ - 1)st and the ith junction points
have the ordinates’;™

Yi-1 Q\Gn + 1% b Cao®e + r 0 T BaiorBioa -
2\

\?J}= Gn + @ity + Gu2¥s + 0 Gaiar®ia + @ .

If wefzg:bw set X = iy — 4,3 ¥ =y, — a,, then, by the above theorem,
oﬂlé;l}near eguation

2§) oy + my + n=1{

exists, where agsin [ and m are independent of the constant terms o, ,
&, +++ , 0, . This relation holds for each arbitrary value ¢ from 1 to. n;
but then also for al} the infinitely many sets of valuez; ,2,, -, T Wh{ch
satisfy the equations (23). Among these, there could be one for which
Y1 = 0; then by (28), y» = a.C = —n/m = u; another for which y, = 0,
so that y;_, = a;,B = —#/l = ». The two lines a,_,C and Ba, intersect
at the point P, , and it can be shown that for each line through P, the

(28)
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equation (29) is satisfied. From Fig. 95, for example, we read off for the
straight line 4,..4. ,

(30} Yo iv = (p— ¥ 1

or i + i — wr = 0. If we substitute the values of u and », then the
equation (20) is obtained. Therefore we denote this equation as the equa-

[ 4 A\
B
1
fl 3
g !
or 1 ¢
Fic. 95 Fia. 96

tion of the point P; in paraliel ap{’:&:‘d.inates. From Fig. 96, in which x and
g are interchanged, we derivetbe fact that for points on a y-parallel,

(302) N B =B T
e, H we substitutéﬁh‘é values,

m_m
{30]3) '\' l! - -

N

—

Therefpr\e;}f the ratio of m/l, in the equations of the various points, 38
constadty then these points lie on & parallel to the y axis.
Bﬁ\ﬁ the equation (29} assumes that the direction of the line 4,4,

P \cfoj:responds to a system of solutions of the equations (23). Therefore, if
\.ve have any system of solutions of the equations (23), and if we draw

the correspending polygon in the scheme of the equation (27), then all
polygon sides go through the junction point P, . Now, since ¢ can take on the -
values from 1 to #, to each interval there is one such a junction poeint
through which pass all the polygon sides of the interval, if the z, , -+,
z, are one of the infinitely many systems of solutions of (23),

If the determinant of the coefficients of the n equations (23) and (27},
with the » unknowns, =, , 2,, --- , #, , is not zero, then there is one and
only one set of solutions #, , --- , x, of these n equations. Therefore,
among the infinitely many pelygons which can be drawn in the scheme
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of th_e nth equation, and which satisfy the equations (28), i.e., go through
the junetion points P, , --- , P, » there must be one for which ¢, = 0,
for which, therefore, 4., and .. coincide. But this polygon is uniquely
determined by the points a., , P, , -+ - ; P2y A, , 0 (Fig. 97).

If we then have twe solutions of the equations (23), by means of which
the junction points P, , --- , P, are determined in the scheme of the
equation (27), then the polygon drawn out from «,, through these junc@m

Ainr  blnt A
“TN 7 I ¢ NN
ff. ‘\\ ‘-:-\“:(
; LN
i s JEN—T‘-& :\
Hang N1 N
A N
s tans %
e N\ - e

Fia. 8% ‘ ;

points gives the system of solutigné& of the n equations §23) and (27).
Then the solution of n equations\with »n unknown is reduced to the in-
vestigation of two solutions of & system of n — 1 equations with n — 1
unknowns, which we obtain by assuming an arbitrary value for one of
the unknowns in the eqp{tions (23).

i b 3

11, The method‘b%}mes considerably stmpler if we can produce from n
solutions of thefirst equation {if these satisfy certain conditions) n — 1
solutions of thefrst two, and from these, n — 2 solutions of the first three
equations,,e{m

In thif“ctise we must observe the following. If we have two sets of
solui}i&l{n_, and .., of the first m — 1 equations which coincide in
n -y directions, then a set of solutions L7, of the first m equations ean be
¢dnstructed from these. In these solutions, the first n — m directions

<\ Yemain unchanged. If the first n — m dircetions determine %he lengths

&, .= al,ﬂ-—mAl.n—m; G = Gpn-midon-m; 7 ; Bn = Grn-mosnms

on the (m — m + L)st y-parsllels of the first m equations, then we can
regard these quantities as the constants of m equations whose mth scheme
is the last part of the framework of the first m cquations. These equations

beecome

(31) @t a1 B T B1pemt2Emsz = 0 &,
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3z + Go.a-m+1Tmt1 + @2.n-meaTmiz + -+ Gena,

A T Cu,nems 1Pt + OpnemrzEmaz e o . S

For the first m — 1 of these equations, the last m directions of L _; and
Lt give two sets of solutions, from which we can find one solution L,
for all m equations (31), and thereby, if we add the first » ~ m\common
directions of L/,_, and LiL, , for the first m equations of t.];tq Bystems (23)
and (27). “\ +

We further observe that the junction points P; are shifted on & parallel
to the y axis if the ratio in the equation (29) remiinly unchanged. Also
it was shown in Sec. 10 that I and m do not depefid on the constants of
the equations, and therefore, applied to the s¥stem (31), de not depend
on® , --- , G, . Then we see that the jungtien points (at which points
Al Ay vy Alnm , the (n m\ni + 1)st y-paraliel is always
cut by the polygon) of the last m — Iintervals, for all sets of solutions
of the first m — 1 equations, must lid\0n'the y-parallel through the junction
points which are determined by the‘intersection of the corresponding sides
of the sets of solutions i, and“L!., , Fach additional set of solutions
L% of the first m — 1 equations, introduced in the scheme of the mth
equation, then yields a neWiset of solutions LY of the first m equations.
This set coincides in thendirections of the first n — m intervals with those
of L'y . In the lasgile® — 1 intervals, the intersections of the polygon
sides of L, , %h. the y-parallels through the junction points give a
new set of jumgtion points through which we can draw a new solution
L of the firsfum equations. We draw a polygon through these new junc-
i?n poinfs ¥ , ‘Pl ., -++, Pi_..; beginning at a,., and ending at

LY Ny

F\rﬁm‘." polygons which satisfy the first m — 1 equations, and two of
which ¢oincide in the first » — m directions, r — 1 polygons can be eon-

_abructed, which satisfy the first m equations, and which have the same
P ’\'girections, in the first n — m intervals, as the r polygons from which we
< } began.

We must then take care that from n systems of solutions of the first
equation, of which two coineide in n — 2 directions, we get n — 1 sets
of solutions of the first two equations, of which two coincide in the first
n — 3 directions, But we get these whenever at least three sets of solutions
of the first equation coincide in the first n — 3 directions. We get the two
?.olutions of the first three equations, which bave the first n — 5 directions
in common from four solutions of the first equation, whose first n — 4
directions coincide, ete. For five equations, for example, we could start
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from the five polygons given in Fig. 98. In this figure coincident points
are only drawn once, and the lengths are omitted.

o & a sp oy f’.ﬂ: ey
vl r
Ao £ \
A’ Aft‘ ’(ﬂ A"ﬂ # P '\\\
Fra. 98 ‘\ ’

In certain forms of the equations, especially for djﬁ'qreﬁbze equations
(ef. Art. 24}, the proeess becomes especially simple, ag a\n@'xample shows.

12. Ezample: A transverse beam rests on Bmipports which have
the distances I, = 3m, I, = 4m, I; = 5m, L\\a‘:}m, Is = 4m between
successive supports. In the first, fourth and’afth sections, the beam
is loaded with 50 kg., in the second\and) third sections with 500 kg.
The support moments are to be calctilated.

The bending moments a.botht}'ie supports, the so-called support
moments, are zerc at the end ybﬁih’ts 0 and 5. They can be caleulated
at the intermediate points 1,2, 3, and 4 from the Clapeyron equa-
tions.” In our case, we get the equations

P4\

L4}, + AMa\ = — 8337172
aM: 4l \; + 5M, = —23625

\ 5M, + 16M, + 3M, = —15062 1/2

:"\1"\" 3M,; + 14M, = — 1137 1/2.

. B'(;a,use of the steplike structure of these equations, we get two
golutions, one of which is a dashed line in Fig. 99, the other dotted.
“\NThe final sclution is then obiained. The portion for the constants is
‘ omitted; this ean be similarly plotted on the first y-paralle] in corre-
sponding scale. From the figure at the top, we read off the solutions

y,

M, = —290, M,= —1050, M, = —670, M, = -+60.

1f we substitute these values as first approsimations in the equations
above, then we get new equations for the caleulation of the correc-
tions. We can consider these by use of the same scheme just as in the
first case. In this case we naturally choose a eorresponding scale for
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the constants. The shearing forces and the reactions of the supports
can be caleulated from the support moments.

Equation instruments have also been constructed for the solution: of
linear equations with several unknowns, for example those by Thomson.®

NOTES

1. Pasternack, Berechnung vielfach statisch unbestimmier biegefester Stab- und Flachs{t-
tragwerke (Ziirich, 1926).

2. For example, Helmert, Die Ausgleichungsrechnung. 2nd ed. {1924) 34Curuaber,
Wahrscheinlichkeilsrechnung und thre Anwedung auf Fehlerausgleichung, 1. 4 hl e& 31924),
Happach, Ausg'eichungsrechnung (Leipzig, 1923); Weitbrecht, Ausg!emhungk*mc}mung I
angd IT {Berlin, 1919-20). \

3. Blumenthsl, . f. Math. «. Phys. 62 (1914), p. 360. (""

4. A method not described here iz given hy Mchmke, ImUadsn 2um graphischen
Rechnen (Berlin, 1917). \

5. Van den Berg. Verl. med. v. d. Kon. Acad. v. Wel. Srd\geries, 6 (1888).

6. Massau, Ann. de U Assoc. des tng. sorlts des écoles spégiales de Gand (18589}

7. CI. textbooks of mechanics and graphieal statlcs,}ug ., those by Muller—Bvesl:w,
Fippl, Lorensz, ete.

8. Jacob, Cm',cul mécanigue {Paris, 1911) Herzng‘ “Feldmann, f¥e Berechnung eleh-
trischer Leitungsnetze (1927).

24. Linear Diffgifence Equations.
1. Difference equations, Whichfhsive the form

M) s Seam , B ) =06 = 0,1, 0+, m)

are a special type f@le’ equations with several unkpowns; the A" here
have the meaning‘givén in 10.2. If we substitute the values for these given
in 10(1} to 10(4), ‘then we get from {1}

{2) fr(yr:yr+l}"'1yr+m)_O(T:[):l!"'Jn)-
The valies Yr s Yrs1 , * - - €80 be interpreted as values of a function for
equ]ths{’&t arguments z, , &y« , --- . In the following therefore, we

usuéﬁy spesak of function values.

(1§ y, and ¥... actually appear in the equation thus fmmed we chaa—
ac“temze the equations as difference equations of the mth order. In general,
n is Jarger than m. In each successive equation of the system, the funet.-ion
value y, which had the lowest index in the previous equation, is‘s lac_:kmg,
and there appears & new function value g.... with an index which is one
unit higher than the largest index of the preccding equation. Therefore
n -+ m + 1 unknowns appesr in » + 1 equations. Of these, m are arbi-
trarily chosen. The number of arbitrary constants is therefore equal to
the degree of the equation. If these are the first m values 5, +* - 5 ¥
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or the last m values ¥y, **- , Yusm , then we can caleulate the other
unknowns, step by step. This is done in the first case from y.,, and in the
second from Ym.1 , cbe. We can therefore speak of a recursion formulz in
this case. A particular solution in which

(28) g =, Y =6, ctt Yamt = Emm
are given arbitrarily, is designated by ~
(2b) L PO N

RN
Such a particular solution in which we start from the end\values ¥ =
Carr, " v 3 UL = Cprwm is designated by ¥t | 4=, In this case,
r has all values from 0 to 2 + m. RS

\

2, In the difference equations appearing ind "he applications, especially
in technieal work, the given function valueg*y, do not lie only at the
beginning, but at the beginning and the ends Therefore the y, with highest
and lowest indices are given, This case‘otcurs in boundary value problems.
In practice, one usually deals mth ~Imear difference equations whicl can
he written in the form KOy

o > 3

f=gu X
(3) . IZ ar.H{yj:;;: ia, (?' = 11 2--. ﬂ)!
where g1 = —(m + 1/2, 6. = (m — 1)/2for odd m, and ¢, = —m/3,
= -+m/2 for evenym. If the constants a, on the right side are not al
zero, the equat.]({:g ‘are called inhomogeneous lLinear difference equalions;
if these constanis'are all zero, we have the corresponding homogeneous
linear difference’equations.

A serieg Gf theorems exist for these linear difference equations which
con‘espo'ﬁﬁ to those of linear differential equations, H, for example, we
hmxf.?vo particular solutions of the equation (3), y!" ‘and <", then, 8s
mébe seen by substitution and subtraction, 5, = ¢! — y*' is a solution

R OLthe corresponding homogeneous system of egnations.
~ " The superposition principle, formulated in 23. 6, is also valid for the
\ linear difference equations. If in particular, we have homogeneous equa-
tions, then each linear combination of the solutions is also a sofution of
the system of equations. If we have s solutions 2 =0,1,-0-,8— 1
of the homogeneous equations

lvas

@) Z Grtaefier = 0 r=1,2,---,n),

=g,

then these ¢ solutions are saad to be linearly dependent if for all values
of x there exists among them the relation
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Ty

(5 2 Aa =0
i)
in which not all the 4, are zero. If there is no such system of constants
A, , then the solutions are linearly independent. The m linearly inde-
pendent solutions of 2 homogeneous linear difference equation of mth
order form a complets sef of solution's, because every other solution can
represented as a linear combination of these solutions: "\
6) %= 3 A O
re} "N\ o~

If the m solutions are independent, then for m suceestive” values of
n. , pethaps for = p, -+~ , p + m — 1 the A, could.# bé determined
that these m values of ., are 0. But if m consecutive eéa of n, are zero,
a8 follows from the form of the linear homogengon$ difference equations,
all values of #, are zero. But the equations

w\J/
rem - O\
{62) 2 AT =0 “
rml X
are consistent under these conditions pfl].y’ i
. ")
WY W
‘?;n '?;]4—2 ®: . ﬂpim—l
A ={20 a2,| =o.
@) ¥
C
\\ im) (m} 4%
N\ ] el * " Mprm—1

If A = 0, wehave a system of independent equations. In this case the .
coefficients A, ean be calculated from (6) for arbitrary x, , because & = 0
is the condition that these m equations can be solved. Now, since each
solution\is“determined by m successive values, then each solution of the
homogeneous difference equations ¢an be represented as s combination
ofthie m solutions of the complete set. .
'"\; The solution of the inhomogeneous equafion can be reduced tf’ an inte-
gration by means of a complete set of sohutions of the corresponding homeo-
geneous equation, according to the method of the variation of constants,
given by Lagrange.” The reader is referred to textbooks of the calculus

of differences.’

3. In practice we are generally concerned with boundary value prob-

leras, ne has been mentioned previously. Buppose that the % constants
Yee s Yore1 3 "** 3 Ygueay 8TE given as initial conditions, and the other
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constants %,sre1 5 - s Yeew 88 final conditions. This problem can be
solved for the inhomogeneous difference equation by use of solutions of
the joint difference equation for m successive values. If we have the lincar
difference equations (3), and if the series is multiplied by & , &, -+ &,
added together, and arranged according to the factors of 3, , then these
factors, except for the first and last, have m + 1 terms, and have the form
(8) Grotarr b Graaperrsr *0 0 Grimaeckiin - O

If the resultant expression is cquated to zero, then these\;}re' the homo-
geneous difference equations adjeint to the original equation.”

4, We shall iliustrate the application of the adigﬁnﬁ‘difference equation
to the inhomogencous linear difference equation ()j’\éeccmd order which, for
example, plays a role in calculations on a tragsyerse support. As boundary
conditions, let z, = 2,,; = 0; then we hayehe equations

Ve \d
Ty - @yats '\ & =
4 N\ \ ’3
Azt + Qooy -+ Goaa « \ = {3
*.0
- Qaxto + l‘laaxs.ﬂ‘éas.;x., = {3
) N
Ce A
AN

'i‘.} Tomt n2¥n-z - [+ SN SR Bt il = B

+ Gt Ty g, =,

The cor;{ﬂ:pﬁﬂding adjoint system is

\‘ Ay + and, =0
.’:% :
Qe @ysfy F Ganfs - ok =0
N :\ (10} .
\ ) Qaste -+ Ogfs - st = 0

By a step“-"is.e‘p.rocedure, we determine & solution £, . of lhe equations
(.10) for the 1mt1‘al conditions £ = 0, = a. We then multiply the equa-
tions (9) successively by &, , .. - ete., and add. We obtain

T

an Tl nbnci 0.0 F Gonbilonn) = 3 4k,

r=1

0.a -
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From these, %, is calculated, and the other unknowns are caleulated by
reversing the procedure step by step. Naturally this x, could just as well
have been ealeulated first with a particular solution £,i°°,

Other boundary conditions, for example, =, + A\x; = k can he re-
duced to the above. We need only set this equation at the beginning of
the system and consider it as a difference equation. If we then add z, = 0
as a boundary condition, we have reduced this case to the above. To. be
sure, this is not always possible. For example, this eannot be done m}h
boundary conditions which are encountered in difference equatiens for

frameworks which are connected eyelically. AR N

Ezample: We again consider the example of the t,ra.nswéi'se support,
already treated graphically in 23.12 by the method'of Massau. This
method is also suitablein the simplification given dre for the handling
of difference equations. In this example, coefficients which are sym-
metrie with respeet to the main diagonsl age’equal; ie., a;. = g, .
Consequently the system of adjoint diffévence equations coincides
with the homogeneous set belonging fQ ‘the given equations; we say
that these equations are sc]f~adjoi,nt-’: We have the equations

1M, + 4M. W\ = — 8,337 1/2
aM, + ISM{‘—{{: o, = 23,625

m@ifz + 16M, + 3M, = —15962 1/2

\'\i v 3M, + 14M, = — 1,137 1/2.

We al=o add’j}l » = M, = 0, 50 that we have a system of linear diffel_-
enee equatidns of second order which are self-adjoint. The rystem
of so]qb{ons of the adjoint equations is

"'\Qo

O 7

N =a, B —be  H=-tlSe h= —5Tlx

#
2 8
o\

o “From these we obtain, upon dividing by «,

/N
\\..

M,(35.4 — T99.4)

= (—8,337.5 1 82,687.5 — 188,357.5 + 64,951 .25)

49,056.25
= L = 54,2008,
M. 764 6

We caleulate
M, = -6788, M, = —10588 M, = —293.0,
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stepwise. As proof, we substitute M; and M, in the first equation, If
we use the velues rounded off above, this gives

~8337.2 = -8,337.5,

which is in good agreement. If we do not round off, then both sides
are identieal.

The calculations for difference equations of higher order is t.he\ BRI 88
above, except that we must use several sets of solutlona n{ the adjoint

equations. AN

5. In 18.8 it was shown how a system of lindarequations eould be
solved by iteration if the coefficients of the main’diagonal are predomi-
nant. Odeasionally, it happens that not onlyl'-'c\-e there several other co-
efficients which are large, but that the coefficients in the two disgonals
adjacent to the main dmgonal are of the s}zme order of magnitude as those
of the terms in the main diagonal, and{that all other coefficients are small
in comparison. We can then omlt. ’the terms with small coefficients to

begin with: W
R
P o
ant + amle + arss T Bray - - - 4 8 =0
Pt 3
€% + Gap¥s + Goals + aas - - + Bapts = 1y

2\

7|+ agzé.‘,‘[‘" Qyas + Qaaxdf - - - + 84T

(12)

a‘a\i 13?1 T l+ Bn-tin—2Tn-z F Gooy 1@y + an—l,nxn,= Lo

\'\\ Q1 Ty + G n-2lna '+ s n—1%p—1 + Oy 0T, =y .

e We then consider the system of bracketed terms which remain as difference
C \ " equations of second order. These can be solved by the methods given
above. If we then write

= {3

auty + G, =@ T G138y — Gyt Gl
a3) @y + @gals + Gpes =y — Gg4F5 — @asls '+ — Oopdy

L PP + B3ay + Aaeky = ay — Gz, — Qasls *** — Qanke

- - . . . . - - . .
- - - . . . . - .
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and substitute the approximate values x{" --. £/ (initially calculated)
on the right side, we have a new system of difference equations in which
only the right sides are changed. Therefore in equation (11), only the
right side is to be caleulated with the same £]a,. . We then get new ap-

proximation values #{” ... z{*, with which we dea! in exactly the same
manner. This procedure is continued until no further changes oeeur in
the approximation valhes.” N\

Ezample: The equations O\
. {
1260 + 5 |f 0.3z 4+ 08z + 04z 4+ 0.5z = 10N
8, + 15m + Tz |+ 08z + lry + 08z =\16
09m|+ bz +16m -+ 8x Olm + 0.6z0s 18

Q.dx; 4+ 1.1$2]+ 11z + ifiey 4+ 43 |+ B = 20

02z 4+ 07w + 12+ Try A+ 4o o §rg = IT

0.7z, + 05w + 0.72a + 13z 4+  Bap\ M 10x% 14
are given. The adjoint sysiem of the b@ck&t&d difference equations
hag the solution ) :

NN

(18b & =1, & = -2,ss=‘k§;E§= —6, £y = +8, & = —11.

With these we get a first apprb.:ﬁrhation

o =1,  Wz? =035, 20 = 0.7143,
(13c) A
0 = 0erd, &M = 0.5454, 2V = 0.6062.
If we substitute these, we get, on the right side of the difference
equations, o \J
O\ 1 2 3 4
(N
\Y T4 1 0.787 | 0.801 | 0.802
A\ z | 0.5 0511 | 0.516 | 0.513
(1,33) 2 | 0714 | 0.671 | 0684 | 0.667
SN s 0.507 | 0.55% ] 0.573 | 0.570
O v | 0545 | 0518 | 0510 | 0510
V) = | o608 | 0498 | 0513 | 0512,

and consequently new approximations. If we give the results to three
places, we get

(139) & -1 + [ + G vatlfrar = 8- -
6. To treat the problem of the transverse support. Miiller-Breslau has

developed a graphical method for the golution of linear inhomogeneous
difference equations of second order. Buppose the equations are
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TeraWe-t + ar.ry" + a".r+1yr+1 = a:;

and suppose that the boundary eonditions ¥ = #..: = (3 have been given,
These equations can be written in the following way:

@ [(ar,r—l 4 a’r,r+l)yr—1 =+ ar.ryr] T+ a [amyr + (ar.r—l + ﬂ'«,rn}ym
Tt =1 .
Ty r—1 + ., + 2y r21 rerrl 0, 1 =+ o, + Grrtl
a’r.r--»} + ar,r+1 N

'14) A\
[ R
= '\
Erre1 + & e + B, re1 % N
or, if we set the first bracket equal 10 p, , the second" tﬁ“g, , and the right
side to b, , & /

BroroaPy T Er v Ny
a‘l‘.r—I + a’r,r-{-l x~\\: T

{14a}

Let us first assume that the %, are kn}y;n. We plot these values along
the z axis parallel 1o one another &% ‘equal distances. In Fig. 100, let
Yy = Yo, Y, . If we now join Yo} with ¥, , and divide this eonnecting
line in the ratio a, ./(a. .., 4% 1), we obtain the point P, with the
ordina.t-e P, . A similar consj;gﬁjct"ion gives the point €}, with the ordinate
¢: . Finally, if we connect™P, with @, and divide this line in the ratio
@r.rea/0. -y , We obtainighpoint B, with the ordinate b, . It is useful to
draw parallels to the (¥, uxis through the points P, , @, and B, . The fist

\
N\ /3

-

i
ey
@ QW

Frz. 100

es are dotted 1n‘F1g. 106, while the last, which is the line of division,
ated by a solid line. Since the points B, are determined by the
S_ of the equation, then if we have ¥,_, and ¥, , we can construet
e foll ; way. We form the intersection of ¥, ¥, , & line
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which may be designated by g, , with the first dotted division line at P, .
We then determine the intersection point @, of the connection line P.B,
with the second dotted division line, and draw through 7,9, the straight
line g.., which cuts the ¥ parallel through ¥, .., in ¥,,, . By a construc-
tion in the opposite direction, we can find ¥,_, corresponding to ¥, and
¥,.1 . Therefore, if we have an initial side Y,Y, or an end side Y. )
we can draw the entire ¥ polygon.

The following theorem is of importance in carrying out the constmtr\
tion, If the rth side of g, different ¥ polygons passes through the fixed
point 7', then the neighboring sides g¢._, and g,., also intersect in\ﬁxed
points, T',_, and T,., ; because the bundle of rays of the Slde \g, going
through 7' cuts similar series of points on the first \
division line I (Fig. 101), and on the interval . "" }; o
boundary line ¥, . The series of points of the first > A
division line I are projected as a corresponding
series of points on the second division line II by (32 | 3%
means of the pencil of rays with the center B,.\\?P
This series of pointe therefore corresponds tq&(he oo i
points of the line Y, also. The lines connécting
them must therefore all pass through % point
P.e1, and 7., B, and T,., lie on atstraight line. If ¢, coincides with
T.B. , then the corresponding rage pf the pencil with ceater B, must
coincide with this line, and therefore with the line g¢,,, also. Since all ¥
polygons here pass through one point because of the boundary condition

= () in the first mtel'va,k\ they will also go through one point in the
second interval, etc. Thetefore it is sufficient to construct two arbitrary
polygons which fulﬁll})(ﬁ boundary eendition, in order to find the fixed
point of the part.lcujar interval. From the ray theorcms it follows that the
distance of thespbint 7., from the limit of the interval is independent
of the ordinates. @f the poinis T, and B, . Wc can therefore make these
ordinates zerolf only the distances from the edge of the interval are con-
cerned. Ther the point T,,, will also Lie on the axis. We add the index
zero to ﬂnese capital letters (Fig. 100) and call the polygons so determined
nul polygons These are the solution polygons of the homl::geneous differ-
(Fige-equation, since b, = 0. One of the null polygonb is the x axis itself.
Wseeond can be constructed in the first region with arbitrarily chosen
sides. This polygon Yi|e. cuts the x axis in the fixed point Ty, , because
the z axis and all other null polygons in the first region go through the
first boundary point. Also, ¥y = € for all null polygons, because of the
boundary eondition. They must also go through a fixed point in the
second, and consequently in the third region also, ete. The points corre-
sponding to the right hand boundary condition can be found in the same
fashion by an opposite construetion. In Fig. 100, the next fixed point

Fra. 101
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@ roilroy T e Y T Brenlen = O

and suppose that the boundary conditions yo = ¥... = 0 have been given.
These equations can be written in the following way:

(a'r.r- 1 + ar,r+1)yr—l '+" !I-r.'?}v] _+_ a +l[ar.ryf + (ar.r—l + ar.rﬂ)yrél
Ur,.l,-._] a,,,..l + a’r.f + a’r,r+] o ar.r~1 + ar‘r + Gr.ﬂ-l

L ] + Qr rin »\
14}
i, O\
_ AN
[ R . T - S, o\

or, if we sct the first bracket equal to p, , the seco;ld}{;o‘gu , and the right
side to b, , AN 4

R4
oo yPr + CrvinGe NG
1da =\ .
( ) a’f.r—l + ar.r+1

m\/

Let us first assume that the y, are {‘no\wn. We plot these values along
the z axis parallel to one anot-hel: @t ‘equal distances. In Fig. 100, let
¥ = Yo.¥. . If we now join Y,,i,w\n:ith Y, , and divide this connecting
line in the ratio a, ,/(a, ,.1 —k’é,_,ﬂ), we obtain the point P, with the
ordinate p, . A similar constetction gives the point ), with the ordinate
- . Finally, if we conneet\P’, with ¢, and divide this line in the ratio
@opat/0, —y , We Obtain & point B, with the ordinate b, . It is useful to
draw parallels to thg\Y axis through the points P, , @, and B, . The firt

r‘.&z

-

E:!Bﬁr ; Borw
et AY

Fre. 100

two IlflES are dotted in Fig. 100, while the last, whieh is the line of division,
18 designated by a solid linc. Sinee the points B, are determined by the
constants of the equation, then if we have Y., and ¥, , we can construct
Y., in the following way. We form the interscction of ¥,.,Y, , = lice
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which may be designated by ¢, , with the first dotted division line at P,.
We then determine the intersection point §, of the connection line P.B,
with the second dotted division line, and draw thr ough ¥4, the straight
line g.., which cuts the ¥ parallel through ¥, ,.,n ¥, . By & construe-
tien in the opposite direction, we can find V,_, corresponding te ¥, and
Y..1 . Therefore, if we have an initial side ¥,¥; or an end side Y.V u
we can draw the entire ¥ polygon, '
The following theorem is of importance in carrying out the constiie:
tion. If the rth side of g, different ¥ polygons passes through the. fixed
point T, then the neighboring sides g,_, and g,,, also mterseet. in/Aixed
points, T,_; and T,., ; because the bundle of rays of the suie ¢, going
through 7' euts similar series of points on the first P
division line I (Fig. 101), and on the interval \ e ixr
boundary line ¥, . The series of points of the first
division line I are projected as a corresponding
serieg of points on the second division line IT by \}
means of the pencil of rays with the conter B,\ 7 ;
This series of points therefore corresponds ’to}the !
points of the line ¥, also. The lines conhecting
them must therefore all pass through 4 point
Trr s and 7, , B, and T.,, lie opla straight line. If g, coincides with
T.B, , then the corresponding ra,y ‘of the peneil with center B, must
coincide with this line, and therefore with the line #.+, also, Bince all ¥
polygons here pass through.Ohe point because of the boundary condition
= ( in the first intervaly they wiil also go through one point in the
second interval, ete. Whetefore it is sufficient to construet two arbitrary
polygons which fulfill ohe boundary condition, in order te find the fixed
peint of the partieglar interval, From the ray theorems it follows that the
distance of the™point T,., from the limit of the interval is independent
of the ordinafes’of the points 7, and B, . We can therefore make these
ordim,te&efo if only the distances from the cdge of the interval are con-
cerned,{Then the point T,., will also lie on the axis. We add the index
2er0 t‘oihese eapital letters (Fig. 100) and call the polygons so determined
,muil‘polygons These are the solution polygons of the homogeneous differ-
Cene equation, sinee b, = 0. One of the null polygons is the z axis iteelf.
X second ean be constructed in the first region with arbitrarily chosen
sides. This polygon Y.le. cuts the z axis in the fixed point Ty, . , because
the z axis and all other null pelygons in the first region go through the
first boundary point, Also, ¥y = 0 for all null polygons, because of the
boundary condition. They must also go through a fixed point in the
seeond, and eonsequently in the third region also, ete. The points corre-
sponding to the right hand boundary eondition ean be found in the same
fashion by an opposite construction. In Fig. 100, the next fixed point

Fic, 101
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Ty vay i drawn from the fixed point T, by use of the division lines and
the point B,, . We do not continue the same polygon, but, in order to
keep the magnitude of the drawing within measurable limits, and to
obtain good intercepts, we use a new, suitably chosen polygon through
T, o1 for the construction of Ty .4z .

By use of this fixed peint, the ¥ polygon whose corner ordinates are
the solutions of the given difference equation, can easily be coustructed
for given B, . For this we first draw the regions on the X axis, and eon-
struct the division lines and the reduced division line abeut gach.boundary
of the region. We lay out the lengths b, from the X axis, (in/s suitably
chosen scale) on these lines. This gives us the points B,/. By the given
construction, we find the fixed points T, and dragrthrough them lines
parallel to the ¥ axis. The fixed points T, , which’are the same for ali ¥
polygons having the same left hand boundary\condition, lLie on these
parallels. In ease the first fixed point T, coincides with T, (in Fig. 102,

i ' ! 1 '!.'\\: H H 1
e e e
:' S \\5 :
i ;) i '
o
4;{
N
Irs
Sl )

Fra. 102

the X axis is shifted downwards for the sake of greater clarity), as must
be the case with the above boundary condition, then we get To, a8 the inter-
section .of T.B, with the ¥ parallel through T, , T, as the intersection of
T.B, with the ¥ parallel through Ty , ete, All ,Y polygons which satisfy
the left boundary conditions must pass through these points. To satisly
the right boundary eondition also, we draw the line ¥,,,Ty,, out from
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Y., (denoted by M, in Fig. 102). This line cuts the nth boundary line
at ¥, . The line Y,7T, cuts the previous boundary line at ¥,_, , ete. The
values ¥, thus found satisfy the difference equation with the preseribed
boundary conditions. As a check the entire construction can be repeated
from another boundary condition.

Fig. 102 represents the equations discussed in 23.12 in connection
with the method of Massau. The equations are divided by the stim
of the coefficients to put them in the proper form. This gives )

9 4 AN
gM,-I—ﬁM, = —3097 1{4\2}
4 2 5 -\ R
EM1+§M2+§7_M3 —.“"@25

5., 2 1aa _

5 M2 + 3Ms+8£}:§ 665 5/48

PN
%g{;.«r 2, = -s11/.
As solutions we get R A\

LN

M, = —297, M, =2"1056, M,= —682, M,=65

in good agreement witll'{’ 23.12, and with the values caleulated in Sec.
4 of this article. \i‘

& NOTES

N . . ) Theoric

1. P. Funk, Dig linkaren Differencengleichungen und ihre Anwendung in der Th
der Buukonstruktignén (Berlin, 1920}; Bleich and Melan, Die gewdinlichen und particllen

Differenzengleithungen der Boustotik (Berlin, 1827).

'g. AgS, Nouv. Meém. Acad. so. Berlin 6 {1775), pp. 183-272. _

3. Eg/\Markoff, Differenzenrechnung {Leipzig, 1806); Seliwanoff, _Lehrbuch der Dvf-
ferenzenreshnung {Leipsig, 1804); Norlund, IXfferenzenrechnung (Berlin, 1924).

& Reissner, Archiv. fur Math. w. Phys. II1, 13 (1008), pp. 817-325. o
5. Hertwig has developed another process. Detailed convergence conmdem!m:}s,
which are omitted here, are found in his work: Festachrit fir Muller-Breslou (Leipzig,
1912}, pp. 37-59.



CHAPTER FIVE

ANALYSIS OF EMPIRICAL FUNCTIONS

25. General Discussion. ~

1. To determine the path of a function given by observation points, we
had in Chapter 2 chosen several of these data points arbii.racilf,sand had
drawn the approximation curve or surface with these. Westhen ‘Obtained

_values for the remaining data poinis which agreed, tgqré' or less, with
those actually given by the observations. Of course, those points used for
determining the formula arc reproduced exactly.{These are then drawn
before the others. To a ecrfain extent they will He)considered to be error-
less. There is a certain arbitrariness in this protedure because the prob-
ability that data ohtained empirically posspss’errors is in general equally
large for all data. '\ .

The problem then is éo find & fupelion which approzimates all the ob-
servations as closely as possible with nt favoring specific data poinls in
the construction. This is especially desirable if we are dealing with pot
very precise observations ofsprocesses which, by theoretical considers-
tions, follow simple laws. This law may then be represented by a smooth
curve, while the measured data fluctuate back and forth because of errors
of cbservation. We thén seek to represent the process by a formuls which
corresponds to the oie obtained theoretically. We assume & number of
parameters in the formula, which are so determined that the curve repre-
genting the fuliction liés as close as possible to the function under coe-
sideration {tHroughout the entire interval) or to the individual dats points
plottedyy :

'Q;ieg“iunetion obtained by this representation can then be used for
fn{d\ the derivative. Otherwise this derivative could be found very

@ pproximately for such relations obtained from empirical data with rather

() targe errors of ehservation.

£ L

2. There now arises the question of a criterion for the worth of the ap
promw:mtion. If only discrete values ave given, we can observe only the
behavior of the values of the approximation function under consideratiot
correa;_)ondmg to these discrete values. Nothing can be said about the
behaw?r between these values. On the other hand, if a curve is to be
approximated, then the entire course of the curv::: influences the sp-

proximation function. Let y{z) be the cu i ¥
L . . rve te b !
the approxamsation funetion, Then © be spprotimated, and FF

296
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b & = glz.) — ylz.)
1~ ‘.he deviation for the argument value z, . If we were to set up the con-
lition that, for discrete values the sum of all deviations, 2 ¢, = 0, should
b zero, this would not be very far reaching, because the poait,ive and
m_-gatl‘\'(.: deviations would eompensate each other. To avoid compensation
ol positive and negative deviations or errors, we could make the sum of
the absolute values of the errors equal to %ero. Mathema;tically, it is simplerd
ta tuke the sum of an even power of the errors—actually the sum of the
«weond powers (as was done by (lauss'). Naturally we do not set this
“um equal to zgero, but make it a minimum. In the casc of discreté€ walies
then, the approximating funetion %(z.) is said to be the hest fok which
ON
12} My=2 @) —u)=2¢€ .\T"

.

/N

1w n minimum. If » is the number of measurements, the ghedn square devia-
Hun is 3 (F(z,) — 1.)°/n, and we can use O

3 my = (Z 7€ n) —gf)’t"\ '

a~ u mensure of the value of the approximation. In the method of least
wrquares we do not use this value. Insteddiwe ernploy

(DU = a)"

no— K

4}

ahere x is the value of the“parameter to be determined suitably. This
value m is known as thédnedn error of the individual measurement.’

In the samie way, when a coniintous curve y{z) iz being considered, we
huil not use the imtepral of the difference between the ordinates of the
given and the a Iir.\uximat-ing curves, but an integral whose integrand is
the square of thig difference of ordinates. Then the best approximation is

the npe | hch
ne 0‘1:\\;{ ¥ i
TR\ M. = [ G - y@) s

r
AN
’”\\ -
IN minimum. We use the square root of the mean square of the deviations

m = (f L @) = vl de)”

b—a

h
2+ 1 mensure of the worth of the approximsation.

3, We shall limit ourselves here to the representation of the relation by
s hinear combination of suitubly chesen Functions. Therefore we write



™
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F@) = togo(®) + an(®) + (e} + -+ + eugala).

The constants c. are then so determined that the value of the expressio
for M, or M, , given above, is & minimum; i.e., for discrete values,

B M = E {y. — Coge(xf) - clgl(xr} — = c‘ngn(xr))_z = L? ¢
1
is a minimum, while for continuous functions, N\
b . Ke
@ M= [ 4 — o) — @ — o — GlhlD) &2
is & minimum. N

In thiz way the difference between the twop qunct-ions-y(x) and F(z)
will be small throughout the entire intervah}i.e., an approximation is
obtained whose value is estimated according‘to its behavior throughout
the whole interval. \\

7
W

4. To make M a minimum, we Bave at our disposal only the coefficients
¢.. because no parameters are cnptafned in the functions g.(z) or, if ther
were such parameters, they wolild have been suitably chosen beforehand.
The expression M may then'be considered as a function of the coefficients
Ca . According to well-kdown theorems, a neeessary condition that M be
a mindinum is that )

(10)

\.\ii‘it\ oM _
oM _

N\

for all valyes'ef m. For discrete observation values, this gives the n + 1
linear “norenal equations” '

O
\‘\\ "

e

:.\'.

N
h
\ }

(11)

t\.
1M

2 9e,

1M
2 de,

1M
2 ac,

= cn[gg] +oalgeg] + - - + c..[gug,.] — [yg] = {jr

= clgeg:) +algll + - F alowg] — [¥a] = 0,

= colgogn] +erfgngal + - +elg?] -~ lyel =0,

“l:xhere the Imore convenient Gaussian bracket notation is used in place of
the summation sign 3. For the continuous case, integrals replace the
sums, 50 that the normal equations become:
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%% =0 f: (go(@)* dz 4+ ¢ f gol@yg{x) dee +-
+e [ 000 as — [ voie) e = o,
o= [ o@a@ e + o [ Gyt - Q
12 + ¢ f g1(@)gn(x) dz f ygn(w):d;\ 1 g,
B = [ @ ds +o [ 0006 de +\

. ::\\': .
+ ¢ f (G..(:v))i?ix - f 4. (x) dz = 0.

The coefficients can be calculated from *hhe normai equations provided
that the determinant is not zere. ¢ A\

In approximating the path of qf:ﬁmction by such a linear combination
of funetions, it is not necessary. thiat the sum of the errors (or the integral
over the error surface) o~

&

b
13 , = or f 7 — y)dx
(13) i, 7 (G-
be zero. In genera} this is the case only if an addiiive constant appears in
the series of the &pproximation functions, if, therefore, we set go(x) = 1.
The first noxjm{’;l',equation then takes the form (13},

5. Th, \éxr}rcssion for M can be transformed still further. If we take
the casé% discrete observations, then

(14]\ = [ee] = [F) — ¥)°] = 7] — 207 + W]
\U we BOW multlply the corresponding normal equations (11} by the eco-
efficients ¢y , €, , - - - , ¢, and add, we get

l(co—-~-+c1~—+ o +c,,%c@) = elgod] + aloy] + -
1 n

+ cn{gng] - [‘yﬁ] = [52] - [yﬁ] = 0.

Therefore, by means of the relation derived above, we can put the mini-
mum value of the sum of the squares of the errors in the two forms
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(18) M= e =[] — ] = 19— [#)-

For continuous functions we find

b L} L} 3 —a
an M = [ v e — [y dn = [ v - [ e
in the same way. 1f we write out the first form of the equations, '
(18) — edygel — alyml — - eyyd + [yy] = led = MO\

] . » .
_c.,f ygolx) dx — clf ylz) de — < \ O

— f: yg.(z) de d‘tff‘y.’(m) de = Mz,

N
and add this equation as the (0 + 2) nd to the coﬁg}sponding set of normal
equations {(11) or (12), we have a system of m\*"2 equations, from which
we can calculate the » + 1 unknowns alebHe value of M, according to
the scheme given in 23.3. Since we are dﬁg.iiug with symmetric equations,
we obtain the part of the scheme lyidg above the dotted line.

(19)

~XoTES
1. Gauss, Abhandlungen zur Methods der kleinster. Quadrale. Edited by Borsch and
Simon (Berlin, 1887). e
2. Cf. Ensyhlopadie d. math. Wissenschaft I, D, 2; Bauschinger, Ausgleichungsrech-
nung, or any other book 'gl\a.pproxima.tinn of functions.

. éﬁ\ Approximation by Linear Functions.

1. The finding of the approximation funetion becomes especially simple
if we arc dedling with functions in which the one varigble is a lnear (0¥
approzitiately linear) function of the other, so that approximation by @
linggif“ﬁﬁhtion i« sufficient. When such observations are plotted on ordinary
cobtdinate paper, deviations from the straight line oceur, gither because
ok the errors of obsetvation or for other reasons. The problem is fo find

i \the straight line best representing the relation.

QO

Tf we are concerned with discrete observations, then the
argument values z, , as well as the corresponding function

‘ values, can be measured inecrrectly. However, We shall
consider the argument values, plotted as abscissa values,
v as exact, and aseribe the errors to the function values,

plotied as ordinates. For example, if we have measured the
co_rrect ordinate value y, to an inaceurately measured ab-
scissa value z, , for which we have measured z, + A, then
we take the abscissa value z, + A, as correct and assign 10
Fra. 103 it the now inaecurate ordinate value y, .

A &p
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If y, are the measured valucs, ¥, the desired approximation value,
then, by 25(8), the sum of the squares of the errors, :

W M= T A= 3G — o)
1

myst be a minimum. If 7 is a linear function

(1a) ¥ = ax + b,

then the error of the individual measurement ig, A, = y, — az. — b. Theré-
fore in

O\
2 M= 3 @ — az = B, O
1 3\

the parameters @ and b ate so chosen that this expresaiqnjﬁecoines a mini-
muin; i.e., by 25(11), m\‘

5o 2 W —az, — B = — 3y —wd - b, =0,

28 1 N
@ R

19 ) _

E-a_bzl(yr_haxr_b)sz-—g.yY_a‘xr"b)zo
or, if we again use the Gaussian notsyﬁifrn, the normal equations become
(4) ly.w} — afzl] — bw] S0 [y — alz] —bn = 0.

From this it follows that 7

) ylzl  _ eleyd = el
® b= oA N @ n[zs) — [&]°

2, Accordingte Wichmke,® the approzimating straight line can be obtd?md
graphicelly In tiie\following manner. The second of both normal equations
can be writtégin the form

) 3\'\\“ %:a%}’—]%—b; y, = ax, -+ b,

) whére' ;}, = {g.]/n, 2, = [z.]/n are the coordin‘ates of "the c'enter of mass
”i\)i the pointa plotted. Thercfore the appro;cimatmg strajght line, according
{0 the second equation, must be a line through this center of mass.

After the center of mass S has been ascertained, we draw a number of
lines through it which could satisfy the problem. 'We 'then measure for
these the deviations of the measured points, in the dl'rectmn of the qrdmat.e
axis. We calculate 3 A} and plot this value, in arbitrary scale units, lper-
pendicular to some auxiliary line at its int.eI'Sf:ctiion with the st1'a1gh’rii inea
of the pencil through the center of mass. This is done for a]% t-hﬁ, C. oicri
approximating lines, and the points which are obtained are then con
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nected by a smooth eurve. This curve will have a minimum. If we drop a
perpendicular from this point to the auxiliary line, then we have a second
point of the desired approximation line.

According to Werkmeister,* it is simpler to find a seeond point of the
line if we assign to each point the weight z, . Then the coordinates of this
center of mass 1, = (/). ¥ = (ly,2.3/[2,]) satisfy the first equation.
Therefore the approximation line must also pass through this poinkz_
Copsequently we have two points of the line. The summations.gan be

carried out numerically or graphically. O\

A\
3. Ezample: Perry® gives in his work on applied mechanice the

energy loss of a pump in mkg as a function of the height h:

hinm 6 15 30 sl & 90 120

Q in mkg 10.25 10.42 11.26 1252 13.78 15.04

. AN
The dependence is to be represented by a linear function.
Tf we want to make the a.pproxim’a}ion graphically, we must first

amkg s N ;
sk 3\ L0

1l

hm
100 120

N Frc. 104
determine the coordinate s of the center of mass from these numerical
values, by graphical or numerieal addition, and division by 6:
h, = 53.5m,, Q, = 12.212 mkg.

‘The d.esired line is then sA’, by the method of Mehmke. This has the
equation : _

0 = 9.92 + 0.0428h.
For the coordinates of the second center of mass, we find
hy = 84.9, @, = 13,557,
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This gives the point ). The straight line 83" coincides (in Fig. 104)
with gA’, as it indeed must.

If we want to carry out the operation numerically, then it is ad-
visable first t0 assume an approximation line, and then to set up the
normal equations for the improvement of the approximation values
thus obtained. Let us take as the first approximation the line through
the third and sixth points, .

Q— 1126 378 = T
RC80 ~ g0) Q= 00MBAI0=ah D A

We get approximation values for Q from these appro:dmatin};\values
¢ and b. To obtain the correct values, we add the co,m:éption AQ,
Aa and Ab to these. The deviations of the obsewezdj.ﬁloir{ts of the

N\

approximation curve are ~N

(o) & =0+ AQ — @+ Aa)h, — (5 + AB) XQ, — Ak, — b
if we apply equation (7). Then , x’\\ /

® 3(8Q, — aakyS ay

is to be made a minimum. The nmp’.bér‘é appearing in the formation
of the normal equations are now glL so small that we can carry out
the multiplications mentally, qr.wif,h a slide rule. We get

th Q Q. " [ag] [hag] A%
6 10.25 7105252 —0.002 —0.012 36
15 10.42 \ U162 —0.210 —3.150 225
50 11.26 |\ 1126 0.00 0.00 900
60 12.52 { ) 12.52 0.00 0.00 3600
90 1878 13.78 0.00 0.00 8100
120 '{5‘.04 15.04 0.00 0.00 14400
321 () —0.212 ~3.162 27261.

From*t',his we obtain .
) 6-3.162 — 0.212-321 _ _18.97 — 68.05

O Ba= "o g oraeL 103041 — 163566
49.08 '
= ——— = ] I,
gog2s — 20008
{8b)

0.212-27261 — 3.162-321 _ 5779 — 1015
= 321 — 6.27261 60625

__ At o787
= 7 g0525 0.0787,
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by the use of equation {5); i.e., we get as the equation of the approxi-
mation line

(8c) Q = 0.042814 -+ 9.9213,
which is in good agreement with the result found graphicalty.

If & continuous curve is to be approximated by a straight line, then we
must replace the sums by the corresponding integrals. These itegrals
will perhaps be evaluated graphieally. Otherwise, we proceedagxdetly as
above. R 2,

'\

4. If we are to plot the measurements on Function senigs; rather than on
coordinates with uniform seales, and if these are 50 “shosén that the path
of the function can be represented by a straigh}ﬂine, then the above
construction needs an alteration, given by Schrderdt.® Suppose the function
scales on the respective axes are N
(9) E=ola), a9V
Just as with uniform scales, we now agsume, for the case of discrefe ob-
servations, that the argument valdes T, , and therefore the abscissas § ,
are correct. Then the observafion errors are transferred to the function
values ¥, and hence to the ordifiates 5, . Therefore to the abscissa & = iz,
is plotted not the correct ‘vordinate 3, = ¥(¥,) but the inaccurate 7. =
¥(y,) which has the ercor -

(10} Ay, w\i&.(y,) — (@) = ¢ @) Ay, = Y {y)ay, -
The equation of,tﬁ approximation funetion is now
(11) & 7=at+b

L.e., the eﬁdl: is
e 4
A\ Ag, = 4. — af, — b.
We $hen gel,

Ay, b

for the exror of an individual measurement. From the condition that the
sum of the squares of the errors 3_ (Ay,)” be a minimum, we get the {wo
normal equations for the determination of ¢ and b:

oo [ - - (o L] - L) - ]

Th:e approximating line can be found graphically as above. We need only
assign to the rth point the weight 1/(¢%).® Then the coordinates of the
center of mass are
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{15} N = I?::E] :[wlm]; g = [ffﬁ:‘ ["I’]’;ﬁ]

By division with [1/(¢)'}’], the first normal equation (14) ean then be
written

{15a} %e — af, — b = 0.

The approximation line therefore passes through the center of mass thug
determined. 'We proceed exactly ss above, cxcept that we either dlot
[{An)*/ (¥)°] perpendicularly at the various points of interseetion ywith
the auxiliary lines, and determine the second point of the approxin"lation
line by the minimum of this expression, or, more simply, we attribute
the weight £,/(¢)" to each point here also. Then we get al sétond center
of mass with coordinates 0

o\
w e [Pl 5 oo [ERE

By the second equation, these coordinates a{féﬁétisfy the cquations of -
the approximation line. Hence this line igyetermined if the two points
are not too close together. )
5, BExample: The experiment,s:;bf “Fuhrmana” on the air Tesistance
w of his balloon model ¥ cah Be represented by an equation of the
form w = Av", where  js the air veloeity in mebers per second, 4
and n are constants. F{om the observations, we take the following
data: )
\a\|4 15 lﬁ |7 |8 |9 [lﬂm
w | 02 1 q.zi 4 15 | 27 | a7 | 52 | 67 | 83 | 05 | 105k
If we put\ﬁhé equation w = A" in logarithmic form, and write g =
log w,:$§£= log », then we obtain (if we plot the data on double log-
arithmi¢ paper) an approximation
2 8
N n=af + b
e weigbt of the individual paint is 1/()” = w'(In 10)* but since
\J the constant factor (In 10)" is canceled out by le!SlO‘Il, we can omit
this factor. From the scheme of the next section, in which the problem

iz handled pumerically, we take

|:-f—,] — 362.18, [ﬁ] — 368.85, [Gl,)—z] = 394.99,
o that we find for the coordinates of the center of mase 8§
£ = 0918, 7. = 0934
The second point A’ of the approximation line is found either by the

311|2

N
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minimum of the quantity > (Ay,/¢7)? for the lines plotied experi-

mentally (which are not drawn in Fig. 105), or by the ealculation of
'f 3]0 [5]
; —%3 | = 344 48, —5 | = 336.
2y [w y WY
] From this it follows that £, = 0.927, 9, =
j 0.052. These points lie too close together
for us to draw a line through them with
! any certainty. 2 AN
- From the drawing v\v’eget'
f:[o // ) ) o 5 1610,
3 / _ 'Mj‘:’lﬁ —0.542 = 0.458 — |
s r
a{}/ \ " = log A = log 0.287,
A ( 50 tb%éﬁ}ve find as an approximation func-
@Z_rﬂ 1 T ‘} TTT |:f £ pkan 4
7 Z o\ o w = 0.287"".

I'1a, 105 &

6. We shall now ealyy out the numerical approzimation of the sbove
example, without, prévious formulation of an approximating function.
From ihe tuble(given here we see that we are dealing with materially
Jarger nwmpers than in the use of a preliminary approximating

function, >

W 7 | L | e | | ] | A
/e —0.6900 | 004 0 —0.03 0 0
/NY| 03010 | —0.0969 0.64 019 | —0.06 | —0.02 0.08
™ 0.4771 0.1761 2.25 1.07 | 4040 | 4039 | 08I

0.6021 0.4314 7.20 4,39 3.14 1.89 264
0.6990 0.5682 | 13.69 9.57 7.98 5.44 6.69
0.7782 07160 | 27.04 21.04 10.36 15.07 16.37
0.8451 0.8261 | 44.59 27.94 37.08 3154 | 3206
0.6031 00191 | 68.80 62.21 63.32 57.18 | 5618
0.9542 0.0856 | 98.01 33.52 97.58 93,11 8024
1.0000 1.0607 | 13225 | 13225 | 140.28 | 14028 | 13220
z 30499 | 362.18 | 368.85 | 34448 | 336.00.

By {15} this becomes

o = 34448 X 394.99 — 368.85 X 362.18 _
336 X 394.99 — (362.18)° -

1.6086,
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_ 368.85 X 336 — 344.48 X 362.18
= 7536 x 20400 — @ez.asy  ~ ~0-538 = loz 0.200.

Therefore, this gives as the approximating function
= (.290y7-%°

which is in close agreement with the equation found graphically.

Rothe® gives another example which also can be treated very well
graphically: The axes of a rotation ellipsoid are to be determiped
which best approximate a rotation bedy of approximately t-h'g': fdrm,
Corresponding values of z and + are determincd with a mitremeter.
These values are plotted by placing the quadratic seales g=3z", 4 =
on the ordinates, and the plotfed points are approxima.ted by a
straight ling, accordmg to the method above, TheJutéreepts of the
straight lines on the ordinates permit the lengths‘of the axes to be
read off directly on the quadratic scales. ) \\'

$

NOTES NS

. Behwerdt, Lehrbuch der Nomagraphie (Berljni 1624, p. 82,
. Werkmeister, Z. f. angew. Math. u. Mech®ly(1921}, p. 401
Perry, Angewandie Mechanik (Bu‘lln J.QOS), p- 513.
. Bchwerdt, op. cit., p. 34.
. Fuhrmann, Z, f. Fluglechnik 2 (1911‘)', pp 165-167.
- Rothe, Blekirotechnische Zeitschrifi, 41 (1920}, pp. 999-1002.
22\
&)

27. Approzimiation by Rational Integral Functions.

1. In eases in which/we know nothing about the path of the function,
. or in which we ma.kb én apprommate pumerical caleulation of complicated
functions, not al)'eady tabulated, it is most convenient to approximate the
functions by @ power series. We therefore set
O\ » B
N =1, g@== o, &)=

oo g B

oWe mtroduce the limits —I and -1, in place of the interval limits a
ﬁ\d b, by the substitution

at+b a—b
(1) zz—é——'—'—f £,

If we set up the approximating function
(2) T o= a4+ b+ @ff + - F ol

then, by 25(11), the normal equations become
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nge 4 [fan  + [Flea - (e, — Tyl =0,

[as + [Pl + [Plaa -+ [']an — [yl =0,
3)

g + (£ e + [ %an -+« [F7]a, — [90] = 0. o~

As the (n + 2)nd equation, we take the equation 25(18} for the Ealculation
of the sum of the squares of the errers: (M

R\
4 —wlas — [ytia: — [¥les — yfla. + lyyl s M°.

Consequentty we have a system of symmetric equitions of the form con-
sidered in 23.3, from which we can ealculate the\unknowns g, -+ 6, by
the scheme on page 270. In addition we caud determine the value M, ,
and therefore the sum of the squares of th:errors. If the measurements
are made for equidistant values of th ‘argument, then the sum of the
odd powers of ¢ becomes zero. Thergfove the normal equations divide inlo
fwo groups. From the one group weean calculate the coefficients with
even index, and the correspondifigiterms of the sum of the squares of the
errors, snd from the other group those coefficients with odd index.

Nothing can be said as ggeneral rule about the degree of the approxi-
mating function to be selecteéd. The best we can do is to plot the measured
points on reeta.ngulg;(coordinate paper, draw a smooth curve through
them, and consider what must be the degree of the curve with which we
can best represpr}& his curve. Naturally we choose as low a degree 2
possible for thé approximating curve,

\¥
',%.;\'E&ample: In the Lehrbuch der Physik of Muller-Pouillet, the

) lependence of the specific heat of water ¢ on the temperature & is

R\ “given by the following data:

-

Y t o o R [ ¢ Y
-1 0 1.0075 7.5 0.2 60 | 0.9995 0.5
-0.8 10 1.0008 0.8 0.4 70 | 10012 +L2
—0.6 20 0.9974 —2.8 0.6 80 1.0032 +32
—0.4 30 0.9971 —2.9 0.8 90 | 1.0057 +5.7
—0.2 40 0.9974 —26 1 100 | 1.0086 +8.6.
0 50 0.9983 —~1.7

From tl‘le curve drawn in Fig. 106, we see that, because of the
asymmetric path, a function of at least third degree must be used
for the approximation.
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iM] e
Tocs!

4
Fic. 106 NN

First we introduce the limits +1 by the substitution
&ft +1)

and to get smaller numbers, ,We set ¥ = {¢ — 1)10.° The normal
equations can be calcu!ata@ from the da.'ta.

1las . 44&.2 — 167 =0
\Y :
1.4a) + 3.1328a, — 10.56 = 0
p 3 \“;
44%,. =+ 3.1328a, — 2008 =0
"\Q
\\“ 3.1328¢, + 2.6259a; — 5.1408 = 0.

Tﬁerefore there are two groups of equations which 'are, with the
aﬁd" tion of the corresponding parts of the expression for M, — (2241,

\/ ligy 1 4.4a, — 167 =0
4.4g, + 3.1328a, — 2008 =0
—167a, — 20.08a; + O = 4,,

!

4.4a, + 3.1328a; — 10.56
3.1328a; + 2.6258a, — 5.1408
— 10.56a, — 5.1408a; + 0

Ag.



310

PRACTICAL ANALYSIS

If we use the scheme given in 23.3, we get for the cocfficients,
a, = —2.386 a: = 9.761

o= 6682, a5 = —6.014,
If we again divide by 1000, we get ~
¢ = 1 — 0.002386 -+ 0.006682¢ + 0.009761¢ — ?:mgom“,
and since [yy] = 200.09, this becomes £\ -~

N

M, = 200.09 X 107° — 156.15 X 10_"’ — 39.65 Xl 0 = 4.20 X 0"
Therefore, the mean error of an observatigri;ié, by 25(4),

(429 X 10"‘)“’" \ -3
m—( L — ¢ Jou= 078 X107

For cocfficients therefore, we'caﬁ‘carry along at most four decimal
places, i.e., « \J

a3

¢ = 09977 430°0067¢ + 0.0098¢° — 0.00607"

The curve which is\obtained is dotted in Fig. 106. If we form the
sum of the squares of the exrors from the given values and the eleven
values plott-e(} iin,\the figure, we get

N\
N fee] = 4.20 X 107°,

N

in cqmﬁﬂefe agreement with the value calculated above for M, . For
thg,gljginal variables we get
N\

A © ¢ = 1.0068 — 0.00026¢ + 0.000011126" — 0.000000048¢".

If the approximation obtained is not sufficient, we can approximate
by a rational integral function of fourth degree. Then the system of
normal equations for the odd coefficients remains the same, while the
caleulation for the even coefficients must be repeated.

3. For the approximation curve of widely scaltered observations, we 88
usually satisfied to make & graphical construction. We plot the observa-
tions on rectangular coordinate paper and draw a smooth curve amongst
these points, i.e., 2 eurve for which at least the first derivative is continuous.

For a check on the path of this curve, we can make use of the appros-

mation by rational integral functions is still another way, if the observa-
tions are equidistant,
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First we assume that the curvature changes so stowly that, with suffi-
cient accuracy, we can approximate the portion connecting any three
neighboring points with a straight line. By the eoordinate transformation
t = {z — )/h the argument values z_, = 2, — h, &y, x,; = %, + h of
these three points are assigned the values —1, 0, +1 of ¢, If the approxi-
mation line has the equation ¥ = a4 +- a,f, then '

+1
(5) Z (?J — da — Q’m‘f)2 N\
-1
must be & minimum; i.e., N\
NS ©

+3
; @ — o —a:t} =y + yo + #:1 — 330 = O

® R

+1 ’
; ¥y —a —a:)t = —y ; + y. — 2800,
AN
We are only inferested in improving the middleﬂf;.r}inate. This becomes

(7) Ho=t =

| b=

(-1 ‘f—,. yn:‘l‘ IR

This 1z the ordinate of the eenter of. g'na.':s of the threc points. Neglecting
one of the points, we connect the p:t-]ﬁef two P, Pmi1 by & straight line,
which euts the ordinate of the omitted point
B 4Py at Q. (Fig. 107). The length Q,P., is
% [¢ \Jthen divided into three equal parts, and the
N di}rision point P,, adjacent to the point €.
) is chosen as the nmew approximation point.
Then all the points t, except the two end
points, can be corrected. I the points so
obtained are still widely scattered, the
process can be repeated.

s) ) Fra. 107 4, If the eurvalure changes o0 rap‘id:ly,
) ther we no longer make approximations with
%nents of straight lines, but use parabolas instead. To construet these,

we use the point itself and the four neighboring points. We therefore use
the points which have the abscissas —2, —1, 0, +1, +2 and the ordinates
Yo2,%-s » Yo, Uas , Yus after the above transformation. Let the equation of
the approximation parabola be

8 7= a0 + ait + ait’
Then
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+1 )
() > = o — @t — @l
- |
must be a minimum. This gives the three normal equations

+2 +Z
Z(y—an—a;i~ast’)=zz:y—5ao—10az=0.
= <
N
+2 . 3-...§ R
(10) ;(yt—-aot—a,t—azt)—_zty— @ =0, A\
A

\
+2

. " W
3t — ol - af — ast) = 2 Py — Mg 3a; = 0,
-2 ' -2 AN
'::\\

if we observe that 3724 =0, 3.2 = 10,3503 £ = Oand 2213 i‘.*; M.
Since we are only concerned with the corrected value ¥, = which we
obtain for £ = 0, then we caleulate this vilue by elimination of a, {rom
the first and third equations: o\

360, = 17 Sy ~ 8,5 Py
(1) Sy
= ‘—3%:.-}‘;}’"12?—1 - 17yo -+ 12y, — 3y«
Now by 10(6}, m<“
(12) \51;3; Yoo — 41 -+ B6yo — Ay + 32
If we introglui;e this, we get
13) ...\1:'\ 35a, = —3A% + 35y, ,
>
QT Bo = G0 = Yo — s A .

36

In general we ghall be able to draw a smooth curve through the resultant
points after a single correction. If this is not the case, then the same
process ean be repeated, until the corrections which appear hecome van-
ishingly smail in comparison to the ordinates. Because of the vanishing
of A*, we have then made a stepwise approximation by a funetion of third
degree. The disadvantage of this method, in comparison to those given
in Bec. 1 of this article, is that we can get no improvements on the first
and second, and the last and next to last ordinates, because we canno
form the corresponding differenees of fourth order.!
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5. Ezomple: .If we investigate the elastic hysteresis loop of steel
bars under various large loadings and unloadings, for example, for
the load o and extension ¢, we find the values given in the first two

columns:?®
kg | & | ar | M A% | —38/35] & | —3/38] =
Af At

000 | 5401 5491 5401
103 Q&

1000 | 594 1 504 (1) voe
104 + 5 G\

1100 | 698 6 —6 | +05 | 6985 | 4092 | 6987
110 -1 A

1200 | 808 5 +2 | ~02 | sop&\ —02 | s07.6
315 +1 | )

1300 | 923 6 +6 | —0.5 [\g285 | +03 | s223
121 + 7 P\

1400 | 6044 13 —16 | +1444 60454 | —p.4 | 68045
134 = 9 % ¥

1500 | 178 4 +30 {26 | 175.4 [ —0.7 | 1747
138 +21 o\ &

1600 | 316 25 &N 318 316
163 AN

1700 | 479 N 479 479

The difference scheme isformed from the values of ¢, — 3/(35)A" is
caleulated, and thig correction is added to the value « giving = The
same Process can a‘g@n' be applied to these values. The second eor-
rections are generally much smaller.

AN/
6. If we areynot dealing with discrete observations, but with con-
finuous eurves,‘then integrals replace the sums. The integrals, after the
transfom@on given in Sec. 1, take the form

“

Q) 2 . .
N e +1 11fm+_nlsodd
@ [ e awa= [ ema=g Y
-1 -1
0 ifm + niseven
" while we write for the constant terms,
+1 +1 +1
{18) 2J4 = dt; 2J, = y-tdt; ---; 2J,= 1 y-£" di.
-1 - -

If we represent the coefficients of the approximating functictn with @, as
above, then the normal equations 25(12) pbecome, upon division by 2,
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1

ap +%ﬂz —i—-5-a4 e = Jo =0
L, +:a Fsage—=Ji=0
3 1 5 3 ] 1

1 1

a7 3 @ + 5 + - a e = T
.\:\’

éal +?a! +§a5 Q;C\J3=0

1 1 1 >

an +7az +§a4 '?}\\‘“—J‘=0

. . . - . - . ,.".\\” .

The equations are again divided m’b two groups; we can calculate the
coefficients with even index from :§hé first and those with odd index from
the second. If we add the coreégponding terms from the equation for the
square of the errors (25(19)), "

v'.
£33

(18) C=%M:_§'I.'!ﬁd‘=_auJo-‘alJl—asJ:—""‘anJﬂ
A
then we get, f%'\éx:imp]e for n = 4, the two groups
-« B 1 1 1
.’{-‘«}:F gﬂz‘i‘gaq—anO gal+'5”aa—J1=0
& 1 i 1
\:\ §%+gaz+§a4‘-f2=0 éa1+§aa—-fs=0
R\CL)
AN 1 1 1
\”\ g+ 7@t ga—Ji=0 —Ja—Ja =G
)
— Jogs — Jao — Jauo =,

Wl'_liCh are symmetric and which can be solved by the scheme of 23.3. In
this case, either only the coefficients with even index or only those with
odd index change when the degree of the approximating fonction is raised
by one. If n is the degree of the approximating function, then for # =
2m and n = 2m 4 1, the coefficients with even index remain the same,
while for n = 2m — 1 and n = 2m, those with odd index remain the
same. The values of the voefficients are tabulated on page 315.
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v. Erample: We consider the example already treated in 8.4 The
problem is to approximate ¥ = sin % in the infereal 0 to «/2 by a
rational integral function of fourth degree. To change the limits to
the values —1 and 41, we introduce a new variable ¢ by the sub-

stitution
- T
(19a) =sin g (¢ + 1. A
Then r:\:\’
+t . 4 A \;\; .
2Je = f_l Slﬂa(t-i'l)dt'—w: A
_ +1 o m&\" (4),
2J1—thsm4(t+l)dt——;+;
N .
O = - a2
+1 " e 7 3
2J; = fslu%{f%— 1) dt=é+2(3) _2(4)
-1 ’:"" T T T
(19b) O _4 _aa)
{.."\ - 14
\\”, t1 I a
Wy~ | fsin] .4 (é) (5)
.‘.j‘."? f_, sm4(t+1)d1 1r+31r +23r
P ¥
{ \ 4
o) - 2-3@) - —2a-3w)
.y x

’ ’\\..l

< +1 2 3

2J.=f' t‘sin%(t+1}dg=é+4(§) _3.4(5)
-1 x 1r x.

4 5
- 2.3.4(2) + 2.3.4(5) = é(1 — 4.2J,).
. T

.

From ihese we find as th imati i i
formulas shown in the table,  spproximting fanction, veing 1

(19c) ¥ = 0.707102 + 0.554949: — 0.217987¢

— 0.0551656 + 0.010901¢,
Also, we get
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(18d) €y = 0.409999997.

Sinee 1/2 [11 sin® x/(f + 1)4 d¢ = 0.5, then M,/2 = 3 X 10™° so
that we get for the mean crror of a value m = 6 X 1075,

If we caleulate 21 function values for ¢ = —1, 0.9, -.. , 0, ---,
+0.9, 1, and plot the deviations from the true values, then we get

F1a. 108

the curve drawn in Fig. 108 as s solid line, 'while the dotted curve
gives the errors for the approximating fusetion obtained in 8.4 by
the Newion interpolation formula. This latter curve has already
been reproduced in Fig. 28 (page 87) NIf we form the mean error from
the 21 caleulated values, drawntaccording to 25(4), then we get
m = B.6 X 1075, in sufficient dgreement with the above value, while
from the 19 values calculajed by Newton’s formula, we get my =
22 X 107% ~

8. The disadvanta; of.,ﬁ\he spproximation by a power series is that
we must repeat the g&ﬁ‘re calculation whenever it turns out that the
degree of the approxix::ns.ting function i chosen too low, because in addition
to the further thrims, the coefficients of the lower powers also change. We
must thereforetry to use, not simply a power series, but a rational integral
function of/mfl degree such that the terms previously caleulated ro longer
change W other terms are added. This is the case if only one coefficient
appears\each time in ihe normal equations, if, for example, only the terms
appe‘:iiriﬁg in the diagonal positions are different from zero. That is,

4 . O for e # !
@0 [ e a =
-t b, for » = {.
In this case the normal equations hecome

+1

1 1 U S R,
{21} a, -=-b—uf—1 ¥ di, a: =3 y-tdt, G =% f_l yt* di .

-1

Funetions which have this property are called orthogonal functions. The
sum of the squares of the errors is also simplified in this case. It becomes
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7 dt — f (@oga® + @) + -+ + @) dt

=1

M,

(22)

i

f S dt — (bt + bl + bagk + oo + badl).
—1

The approximating function which we get by a development in orthog-
onal functions is also a rational integral funetion. If we arrafge this de-
velopment according to increasing powers of x, the same\approximaiing
function is obtained which we had in the developmen;\f by powers men-

tioned above, « \/

AN
S D

9. The equation

+1 0 fbl'\;# I
@3) [ oo = {3

- for x = 1

expresses a well-known property, Qf}ﬁé spherical harmonics which were
introduced in 16.10: OY

".’” - x £42 &
(24) P L a@ — 1)
: SN 2 dz"
Forl = « we find, by iﬁteération by parts,
1 =y die =D,
25l dt at

+1 »‘\
[ P iy at =

(25) s\“ _ (___l)x +1 e (‘2 _ 1): d!-—:(tz _ 1): &l

A IR T T dr"
:00\:‘
P\ _ @) e -1
\ 2 thent Joy ar '

al
S

NS X ]
) "If 1> , then the integral contains the factor # — 1 and is therefore zero st

\‘:

either limit; consequently it is shown that for the spherical harmonics

+1

(26) . P, ()-Pi(t) di = O for x #= L.

If « = I, then we get from the above equation

(268) [ Pra-= (_23325?)': [ jl @ - 1) dt.

The integral can be transformed still e s
. f -~ f
integration by parts: ili further by x-fold app_hcat.lon o



AFPPROXIMATION BY RATIONAL INTEGRAL FUNCTIONS 319

9 o Y — =1} .2° o — 1) xR+
@ [ @-va T pacrsen N dz=(—(2)fq_)—l—},_—

1f we substitute this, =we find
+1
(28 b, = P di = 2
) [, P a 2+ 1

Consequently, we have found the coefficients of an approximation fanetien
of spherieal harmonies,

N

(28a) ¥ = aPo@) + aPi(@) + - + wPula). D
7NN *
Ii y = f(2) is the function to be represented, this becomes ¢ ™
. 2¢ £ 1 [+
29 = K¥s.
(29) a2 [ Posma, (7
and the half sum of the squares of the errors becommes ’
A\
I T R
30) sMo=3 [ e X85
The spherical funetions of lowest order, a.‘r;;’ '
Polz) = 1 OB = x
8.1 N _5._ 3
@y P = 3% — 5 ¢ Poey = 3% = 3%

o)
P;(x)=3—85—z"—\§x”+§ P;,{x)=§83—x5—3z5-n:3+%5x.

10. The prigcfpdl work is in the evaluation of the integral. In general
this cannot He performed analytically; it is certainly not possible if we
are dealing With functions which are empirical in origin, If these functions
are givéh graphically, then we can obtain the quantities Jo , Jy, - in
(16) by eraphical integration. In this case, we must draw the curve for

”saéh' integral, or we must use the integral eurves of higher order. The
\eﬁﬁation of Jacobi [14(19)] becomes

oF, = f:x“ydx=f_:1ydw—nf_:l f:ydz’

ot [ [ [vseoe e [ [

ifweset f =0 &= —1,5 = +1. Then we can determine the desired
integrals by the end ordinptes of the multiple integral curve. But in

{32)
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general, the method of drawing and meaguring with a planimeter yields
more accurate results.

I we do not want o carry out the calculation graphieally, or if for
some reason we do not want to use the methods given in the first seetion
of this article, then we refer back to the calculation of the integrals by
the approximation methods described in Chapter 3. If we have tables'
for the spherical harmonics, we can simplify the work by caleulation of
the integrals J*} f(P.(t) df otherwise we must first ealctlate the

*! ¢f() d¢ individually; in this case the development ingpherical fune-
tions has scarcely any advantages over the methed of powerseries, in oo far
as computation is concerned. If the observation errors pe small, then we
can perhaps use Simpson’s formula [15(21)] for eguidistant ordinates, or
formulas in which the ordinates enter in with a@nearty equal weights &
possible [15(5), (12), 16.7]. ' A\*

11. The expansions of this article canbe.extended to functions of several
variables.* Let a function 2(x, v, w , 4 &) be given analytically, or in the
form of tables with several entries,op graphically in the form of a nome-
gram, or, in the case of only two'wAriables, in the form of a contour dis-
gram. We seek an approﬁlnatihg Function z such that

@3) W = [ @~ a,

integrated over theswhole region to be represented, is a minimurn. Howe
have only disciéte“vatues, [ec] must be a minimum. For example, with
two variablesy

6y 2D
Theyefore

N

E

Cov + Cro¥ + €t + oo’ b 1,u + Ge?® -

(3}’7 M= fw (2 — Con = Crott — Corw — Caott” — ey — oat’” <+-) 40

must be made a minimum. This gives the normal equations

_’;z(u;")dﬂ—Cooj;dﬂ—'cm‘,:‘udo—cmj:,udo
(36) oo [t e =

| Lm(u’”)do_"c“j;udo“—CmLugdo—cmjwda
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]
—cg.,fudo---=0,

rvz(u,ﬂ)do_—cwfvdo-—cmftwdo——cmfy’do

N
-c-mf wvde --- 20,
: <Oy
N\
- - . - . . . ru - - . . . - : \
just as in the case of independent variables. If we combme\teﬁns in these
normsl equations, we cbtain : "\\ &
O
@7 [@do— [#d0=0y
. PO

g0 that here also we get ;«}\\'

(38) f do—fzzdo—uj-zda—-f?do

for the minimum of M. In pa.rmthar upon introduetion of rectangular
coordinates, the normal equations ‘become

L zz, y) dx dyio\&;;fi dz dy — .cm j; x dz dy

27 e [yirdy—cu [ Samiy =0,
A,
PRLs
L@(x y) de dy — €0 f zdxdy——cmf ¢ drdy

@é)' —c01£xydxdy—oz.1£:cad:cdy---=0,
2z, ¥) de dy — Coo ydxdy—-clefmydﬁdy
[ wew [ }

—cnlﬁy’dzdy—cﬂj;z’ydzdy--- = 0.

If the function z(z, y) is given in the form of an alignment chart, then



(42)
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we can evaluate the above integrals with the aid of a planimeter. We
can arrive at this goal more rapidly by using & moment planimeter be-
cause, with one circuit of the region, this gives

(40) j;dxdy,fwxdxdy,Lm’d:tdyorj;dxdy,‘[,ydﬁdy;‘[’y’dﬁdy

for the corresponding choice of the curve. Therefore several coefficients
of the norma} equation are equal. If we draw the boundary tutve of the
region, fo(z, y), pointwise on a graph with two quadratic cales £ = #'/2,
7 = %'/2, as is explained in 17.7b, then we gel fivel toeflicients of the
normal equation by a double circuit of this eurve “utvh Jhe moment plari-
meter. To get the integrals f, 2(z, ¥) dx dy - (ec‘currmg as first terms it
{39)) by measuring the contour lines with a Rlammeter, we must eary
out a cubature, a plotting of these scale'numbers as a function of the
height, and repeated measurement (wnKh ;) planuneter) of the surfaee
results, just as is shown in 17.7a. KX

12. Numerically, this case is sim]:vtléét if we deal with the representation
of the path of the funetion in\a Teetangular region. We shall then =
transform the variables that, ‘ﬁhe"bound.ing lines correspond to the values
=1 of the variables, since tlien the normal equations are greatly simpfified;
for example, for the apprommatmn by a function of third degree

@D Z = cCoo + Cmﬂ‘r‘iv oty + €208” + 12y + oy’ + a0’ + 22y
\zxy + coat’

we get the {en normal equations,

é;ﬁz\:éx dy = 4 +§cm —|—§coz = Ju
Q
3 Zlfzx dedy = -}écm _!_%cm _l_écu_ = Ju
i fzy dedy = +3cm +%c,, +§co, = Jo
it dma =l 4l 4L, -
i f wzy de dy = +$c11 =y
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1 2 1 1 . 1

4fzy de dy = +§Cﬂu +§Czo +gcm, = Joa

3 Y ‘5‘010 +?cso +i‘5¢m = Jg
1fzw2y dr dy = -l-lc 1 1

1 Y gt +I5021 +1_5'Cu3 = Ju

1 1 1 1 W)
1 f zzy’ dz dy = ‘!““g'cm +Eﬁau +I§C1s =:\:g12 ’
1 1 | 1.~,f 3

4 f vl dedy = +5501 +'1'5'-:21 +§3oa = Joz .

/N

From the fifth equation we get e,, , while the ot.‘;g;’s ¢an be collected in

three groups of three equations, from each of/which we can calculate

\\

S J

N\

three coefficients, Therefore we have

7 15 s
cﬂD=§JOG_‘—4_(JN+J03); ?g;’:%-‘ T(ng‘-%.fol),
45 1 A\ 45 105 45
CW:Z(JN'_"EJOG): ~ ’ ch=_§'J10_-4_Jsu_‘_4'J12-
S
- 175
(43} Cu2=é§(Jug—%Joo ,\ C:m="4_(orso“%-}-w);
n Aub’ 45 135 1
Cﬂl='§§-}rm ,':\':E;EJM_'ZJM, 612=T(J12_§J10),
Cpg = % 0z %Jﬂl). i1 = 9 .
,,,\:"\'."
e‘qﬁid.istant aumerical values are given along the X axis as well as along
the Y axis, we carry cut the evaluation of the integrals Joo, - ** , Jos by

the formula given in 13.9. This corresponds to the generalized Stirling
formula. The theorem in Sec. 10 on the developmen$ in spherical har-
monics of one variable is alse valid for & development in Laplace’s sphericsl
harmonics of two variables. Because of the orthogonality of these functions,
we are spared the solution of the equations (42). In breaking off with the
terms of a certain order, we always have ihe best approximation in the
sense of least squares. This hint will suffice here.
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13. Ezample: In 13.7, the sagging of & wire, which dapends on the
fength of the span s and the temperature {, was represented by a fune-
tion of third degree, obtained from one of the interpolation formulas.
A better approximation may be obtained if we caleutate the coeffi-
cients according to the formulas given in See. 12. For this purpose,
we first transform the limits to the values &1 by the transformation

s ~ 140 £— 10 '
(434) R i \
RO\
and then form the approximation values for the mtegr\s.ls by means
of the formula 13.9. This gives \

Joo = 431544, Jop = 189.502, Joo = 165306, Joo = 112841,
L ¥

Y

13.270, ~Ans/ 1.406, Ju 3.791,

|
Il

Jor

Qn:\‘;.gc;z = 143.769, J]g
Joo = S0

62.856,

From these we can get the:ét}éﬁicients of the approximation formula:
—37.634,

Coo = 358.535, 805 = 504.589, ¢z = 219.915, Cuo
AN oy = 44.693,¢,, = 12654, 0 = —2L34L,

c) L)
L\ Cos = —0.88, ¢ = —10.508,

\ \. _ cos =  3.710.
If .w‘e;calcuja.te the 77 given function values by the formulas of the
sQ{?\nmm sectlon, we get the following errors

aN

\ 40m [ 60m |80 m {100m{120m [140 | 160 m [180m | 200 m | 220m | 240w
~1{-0.8{-06|-0.4[—0.2] 0 |402|+0.4}+0.8|+08 H

ey :; H471-8.2 |16 1457 |31 1-0.8 |11 |-3.0 |-13.2|-8.5 |1
0 -1 iz‘g —1.8 (0.2 [+6.5 |—-1.4 |—1.8 [—0.4 |42.9 |- 7.7}-8.0 [+10.2
+19° | 0 |+1.5 ~1.4 |28 [+4.5 |{—5.1 [~1.6 |+1.0 [+4.0 |— 4.5[+0.8 |[+17.0
+20° | +3 {+2.3 —2.1 -2.8{42.3|-3.3 |15 © li62|— 3.7/-0.3 [+15.4
1300 | 17 |sg |2 |82 [+r9 =32 1—0.5 |41.2 [44.2 |+ 0515 113
+40¢ | 1 [+8.5 —0.7 (=58 ‘0 1-41 [+1.0 |+2.6 |—0.1 |- 1 [-4.9(+53
B [+HB0 |2 4 |+6.5 +2.0 [+3.1 [+3 09 o |-5.7 T

MAS_“;" sum of the squares of the errors for these 77 values, we geb
o = 2583, while for the formula given in 13(7), we get M = 4243,
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Since 10 coefficients are calculated here, we have as the mean error
of 8 single measurement

/2 152
My = (2-%) = 6.2 or m = (%%ﬁ) = &

If we are interested in the largest percent accuracy possible, then
the formula which makes the sum of the sguares of the absolute
errors & minimum is not necessarily the best. In such a case we m‘:l&
make the sum of the squares of the relative errors a8 minimumy ‘@ther
than the sum of the squares of the absolute exrors.” ) \' N
An even better representation would be obtained if we' were to
apply ihe methods of Sec. 1 to 6 for diserete values,/8ince then the
inaceuracy in the caleulation of the integral is a-voi;ie:d.
KOTES
1. The smoothing out of data is handled in detailyin Blaschke, Vorlesungen iher
mathematische Statistik (Leipzig, 1906}, Ch. VI: W‘n hittaker and Robinson, The
Culeulus of Observations, 2nd ed. (London, 1926), G TX.
2. Cassehaum, Uber das Verhalien von weichem Wiussstahl jenseits der Proportional-
itgtsgrenze. Disscrtation (Gottingen, 1910), })’.':}9." )
3. For example, Jahnke-Emde, Punktioastdfeln {Leipzig, 1009}, p. 83 1.
4. CI. Enzyhlopddie d. math. Wiss. IV} {1, 10: Schmidt, Erdmagnetismus No. 20, and
the;it;l‘;_t“: . hSt&;d there. tution cuhj f‘l.‘a.l.so be used, for example, in the investigation
N o BTITHT: ] ]
of the defsitirDEMHTS\i::f:n in s’tni\'(".lus_ters. E.g., Noturwissenschaften XV (1027}, p. 243.

+8 ) o .
28. Approximation.of the Entire Course of Periodic Functions.

1. With pericudie:funct-ions we can be satisfied witl} t!m appr:om’mate
representation b ‘Gse period if we make use of_ such peno'dm functions for
the approximation whose period coincides with the per:md taken a8 ’f.]ﬂlf1
known petied, or if we use a period which is & submultiple f’f the peri

" of the given function. We choose the sine and cosine as the simplest fuPc-
tions, which are everywhere finite and periedie. I_f' the length of the period
ofthe given function is d, then we transform this to the legnth 2r by 2

thdnge in the argument ¢ = 9rx/d, and use as the approximation a sum
\ of sine and cosine funetions of periods

m
2, =, : §J "5_':

AN

2z
3

Wiy

Therefore, we set

?=aﬂ+alcoﬁt+agcm2‘+ﬂ-30093t”‘

1 »
@ +blsin£+bgsi112t+basm3t---.
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When we consider the entire path of the given function y = f{i), the
normal equations 25(12) take the form

2x wr .
[[w-na=0 [ @-peosi=o,
L L

{2) o
f ( — ) sin ltdt =0,
o o

Now the functions used for the approximation here fcpml\ 4 system of
orthogonal functions. Then \' N’

|
\

FLS

2r Za \
[Tar=am, [ eosnar=o, f’»'sin it = 0.
o [} /¥ 7

‘& #

.

2r 1 72 N I
[ sin ttsin ctde = £ [ costt — Q= f cos(l + WEdt
o 24, 9 24
X’\ w
o\ [Ofor =1
,}.'w wfore=1
@)
f?t . l ‘I,".ﬁf . l F4 4 A
, sin ¢t cos ki dit =§j; sin(l + tdt + §f° gin{{ — x)tdi =0

Ir .m$\ 1 Ix 1 1.3
fu cos It c{{» dt = §L cos(l — «)tdt + Ej; cosll + <)t dt

‘\, 0 for « 51

;\'\ lwfore="_
.I\r§th“ € ‘ne:rma.] equations 25(12) therefore, all terms except those on the
winein diagonal become zero, so that we can write the coefficients without

M\: "\' further observation. They are
\ ; Zx

1 ) 2r
G = % . f(!) dt, a; = ij; f(t) cos [f d‘,
(4) 1=1,2 "

1 [
by =2 fn 7O sin @t di.

w

All integrals of the diagonals terms are = except the first, which has the

value 2r. If we again introduce the period d by the substitution ¢ = 2v%/d,
we have
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ﬂo=§_’;f(x}dx, a;=%fdf(z)cosl%zd,w,
(8)

2 . .27
b =2 f i
1 d nf(a:)smldzdz.
If we judge the value of the appreximation by the value of the integral™
2x
(®) w= | U@ ~ 77 db O
this representation gives the best a.ppronmatmn value at the term at

which we break it off, since when further terms are added Q.he coefficients
which had prewously been caleulated do not change. \\

2. The expression (6) can be transformed into
ar zwr 2z { )\ 2r
@ M..=f y’dt—f vj dt = .‘\z}*dtﬂ [ a

by the use of 25(18). If we carry out the I]uadra.ture in the last term and
consider the equations (3), then, beca,wse of the orthogonality, we have

@® M.,=f y da—w(zao+n’+a,-=-a,.+b’+b=+~-+b.).

We can again take the rogls‘ef the mean square deviation
M, i/2 \ 1 )lﬂ
® m=(2w') %f ¥ dt — a; 2§(a;+b’;‘)

88 @ measure oft ﬂrb accuracy obtained.
3. In ;hén,y cases it is desirable to join the two terms with the same period.
If in 3\

(m a,cos It + by sin
\wie substitute
{11) a; = 7 8in @, By == ; €OS @ 4
ie.,
@€
(12) r=1(a + Y, e =35

then the two terms become

(18 r. sin (% + o)
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If we choose the phase angle ¢; {on consideration of the signs of a, and
b.) in the right quadrant, then the amplitude of the sine wave is positive.
Therefore we can express the periodic function as a sum of sine terms with
various phase angles. The mean error then becomes

1 Tmn )
ay melg [ va-a-g 8T
4. The caleulation of the coefficients @ , - -+ , @ and by , {\b, must be

carried out by approximation methods for functlons whith are given
empirically. If we want to consider the entire path ‘of . Some curve given
by an oseillogram, then we need consider only graphieal or instrumental
methods. A graphical method has been gwer\by von Mises." The co-
efficient @, , which is the mean ordinate of the entire curve, can be de
termined by ordinary graphical mtegratl\n (Art. 14). The coefficients o,
and b, (4), which we write in the form_ ¢\
\" .
a5 @ =2 f@den19; O3 f d(oos It
=5l sin 18); O3 = — L [ syd(oos 19

/”
vy G G

A N

Fia. 109

would necessitate a drawing before the integration. We must shift the



A
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ordinates on the abscissa i so that they get the abscissas sin If or cos &,
In this way, between the y parallels at distances 41 and —1, we would
get [ ascending and descending curves. We avoid the details of drawing
in the following way: we divide the entire interval into ¢ equal parts and
eonstruet in each strip the mean ordinate, in # way still to be mentioned.
This determines an appropriate direction in a peneil or rays. The slope
of this ray is tg ¢.. = y./b where b is the integration bage. A dircle with,
radius r is also divided inte ¢ equal parts (in Fig. 109, ¢ = 12), and parallels
to the y axis are drawn through the division points. This is for the kon-
struction of the coefficients. Now we draw a parallel to the firs{"direction
ray P1, beginning from the intersection point C, of the circlg’,\{vith the

axis. This parallel cuts the y parallel through the circle, division. point
(which. is r{{2mx) /¢ radians from C, , in Fig. 109, I = 2, § 25 cm., b =

2.5 em.) in 4, . Then O

(158a) C.A, = ig r.olf(cos%f — eos 0) = % y,(e@sl—? — ¢os 0).

If we draw through A, a paraliel to the'sec:cmd direction ray P2 up to
the intersection A, with the y-parallel thrbugh the point with angular
measure r-21.2x/g, then o

2
(15b) Cods = CA, + %y}(ﬂos 21 %” — cos s—qﬁ) ete.

The last direction parallel c,uﬁs off a length
3

7\

¢ &N\ o
Cadys =Q%\2 y,,,(cos ml ng — cos (m — 1) _q_)

m=1
(15¢) .
V=5 B va{oonm )
N =130 Al cos mi =),
s value \Q&ﬁh agrees, for correct choice of the mean ordinate y.. , with
the intééral 3% f(0)d (cos 1), except for the factor r/b. The value y,. would
be themean ordinate, in the mth interval, of the curve drawn on the

S

abstissa cos It. This could be found by the rule given in Art. 14, For
afample, for the approximation by parabolas (with axes parallel to the
y axis) this could be done by dividing the part of the mean parallel betwie];n
chord and curve into three parts. By dividing the length €,.Ca-1 00 the
cicele diameter, we can new find the value &, from tt‘,ihe co.l;rhesfk?:(ix;leg
arc length belonging to this mean paraliel. By estimation Wi ;
we cangt:it;ermineg]:hge ratio in which this point divides the are betwfeen t.he
points reml-2r/g and r(m — 1)I-2x/g in the r_:orr(?spoudmg abf;«;lmssa in-~
terval. We find the mean ordinate of the division interval for ;e €oITe-
sponding integral curve by dividing into three parts the length between
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the corresponding point on the curve and the mean position on the chord
(Fig. 110}. In general it is only necessary to choose the mean ordinate in
a few intervals for each integration.

AN

7'\

Fig. 110 G

The construction of the values a, to a, follows/ih'a completely similar
fashion; only instead of the y-parallels, we emplby\ paraliels to the ¢ axis,
and in place of the direction rays, lines pefgendicular to these. Also, we
begin the integration polygon at the cente%o;f the circle.

The constriction of the coefficients cQ’, -, lis, by, e, by is shown

N

b

N7

LAY

kY

Tia. 111

in Fig. 111. In this case, b = 37.5 mm., and the scale modulus is 90/2¢
mm,, r = 18.75 mm., so that

_3TE XA 94
ae-————-—___go “mm;a;-.:-a_——’mm;bt:_%%mm'(;”__.l,g,g)]

if we measure 4, , 4, and B, in millimeters. The constant a, is found by
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ordinary integration, while the B corresponding to the above development
are constructed on the left side of the figure, the 4 under the curve. While
in the construction of the coefficients with index 1 we must change the
direction of the integration polygon for each paraMel, in those with the
index 2, one paraliel is caleulated, in those with the index 8 two parallels,
ete. If the endpoint lies underneath or to the left of the starting point of
the integration polygon, ther the coefficient to be caleulated is positive,,
otherwise negative. We then find

4, = +1.17 mm., )

'\
e = +6.05 mm., @, = —24,15 mm., @; = 54 mm.

b = —295mm., b, = + 575 mm., b ~£1.08 mm,
S\

5, Another possibility for the determination of theveoefficients of the
Fourier series over the entire path of a curve is affered by the harmonie
analyzer. We shall deseribe the analyzer of M. ¢ The constant g, of the
series can be found with a planimeter. Theleoefficients . and b; can be
put into the form OO :

0 o= [ o1 22); O - & [ o)

Z
W
L]
r‘!: _.knx
};x\ F:: v T
i 91‘ z
H L
Il |} ]
1 ! B
| 1 |
bl | e 7«
e i /-/I
] rd - 1
[ rd ]
A :'
44— ST
: iy e |
' L1 M.
Jhc -——B-{'p ﬁl.f ......... Lel—
P D A S
A : !
Fig. 112

Fig. 112

if we start from the equations {5). This is done in order to bandle arbitrary

periods. The Mader analyzer evaluates this forn}- .
1t consists of a carriage W which can be shifted paraliel to the y axis
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by means of a milled wheel runping in the groove of-a rail not shown in
Fig. 112. This carriage possesses three movable parts:

a. The first part is a right angled lever OKT, whose axis K moves on
the y-parallel through the middle of the period, i.e., at the distance d/2
from the y axis. By means of the roller T this moves

b. & rack ZZ‘, which can also be shifted on the carriage only in the
direction of the y axis, and which has an arm parallel to the zexis, on
which 7 moves. This rack turns

c. a disk of radius R with two insertion points P, and P{ah? distance

r from the center D. The tracing point of a planimeter ¢gn be'set in these

holes. "\
If the tracing point F is at the starting point g, then the coordinates

are S
P,iz,=—(b+r), Y, ’m:’g‘,
an RO
P, iz, = —b Sy, =g+
L& ¥ g

If now we trace along with the point F on the curve y = f{z), we can
consider this motion as consisting of-the following two motions:

a. Displacement of the can'iaé{e' WW a distance y + % parallel to the y
axis, the lever F/K’T” remainitg fixed;

h. Rotation of the leve'i'.:'fmm FIEKIT to FKT through the angle Ax
If the arms of the levemhave the lengths m and #, then, by means of the
roller 7, this eauses.a displacement of the rack ZZ’ by nz/m, as we can
see from the sim%‘iﬁr of the small black triangles. This displacement gives
risé to a rotation of the disk D through the angle 8§ = nz/mR. The new
coordinates of\P, and P, are then

¢/ .
8y T, = —(b 4 r cos 8), v. =g+ y+ntrsing,
:n\.:'
AP im = —brsins,  yo= gyt

«f we now traverse the curve y — f(z) with the point F, and then trace

"y back on the axis to the starting point, then the area of the curve deseribd

N
\ W
\ 3

by P, or P, (which is messured by the planimeter) becomes

o
J, =+ fu (g + ¥ -+ 2 + rsin B)d(—b — r cos )

+_£ (g + % + rsin @d(—b — r cos §)

(9) m v s = s [Ca oo
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I, = f (@+y+ 147 cosBd(—b +rsin §)

i}
+L {g + 3 4 7 cos B)d(—b + rsin p)

= +fLsyd(Smﬁ)=rLdy(2(sin%). '

N
We then make A
RGN
- —qr Ll .1 = O
(20) R=d_g- r=3 (=12 )’,:, \.
go that this becomes i "s L
N
. i3 o d( 211':0) e .mg\
o= — £ [ s eos 1757) <300,
@) o\
_x [ . ?.‘E)\:
J.= ¢ [ s@asin 155 v

Therefore, according to whether we put fhe planimeter point in the hole
P, or P, , we get as the difference :@f&?he injtial and final reading the «
jold coefficient of the sine or cosinéterm.

From (20) it follows that a ‘spécial disk is necessary for each pair of
coefficients. This disk is removable and for each pair of coeflicients, one,
orforl = 7,911, -- -'g'ﬁrg\ separate disks are inserted. The adjustment
of the apparatus is m&"by means of a scale inserted in the groove of
the rail, and runnipg perpendicular to it. This scale has half mlllm}eber
divisions, runnin, “m"both directions from the point jnserted at the m.ldf:]]e _
of the in {"Fhe period can also be determined with this. The tracing
point is adjusf .ble on the angle arm FK, and is puf in at _the .dlvls‘l()?l
mark on\FK which gives the numerieal measure of the penoc‘: in milli-
meters:'l}u thie way it beeomes possible to analyze curves of & perl'od length
frqgf 2t0 36 cm., without any necessity of earrying out a t?ramng_ of ﬂﬁe

fven eurve with a particular period length. The conr.stamt is 10 with the
\_2pparatus used, so that, with the ordinary polar planimeter (x revol'utlctlm
equals 1 sq. m.) one vernier unit corresponds to 0.1 mm. angél}ut }:;
If there is no gear slipping between the wheel D and the rack \
error of the apparatus is not very large.”

NOTES

1. Friesecke, . f. angew. Math. . Mech. 2 (1922), P- 313, i ]
2. Other analyzers are described in Willers, 2! athematische Tnstrumente (Berlin, 1924,
Art. 15, and Art. 16.
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20, Harmonic Analysis of Periodic Functions Which Are Given
Discrete Values.

1. Frequently only discrete values of the periodic function to be eval-
uated will be given. In the application of numerical methods, iIn particular,
we shall be able to consider only discrete values, even if the entire path of
the function is given. In the following it is now assumed that these values
are equidistant. Suppose that the scale is already sc chosen t@t the
modulus iz 2r. If we then divide the interval into g equal part§pso that
corresponding to the ¢ + 1 abscissa values O\

"N

2y = 0, 2 =2~q£, e = 22g-z, e, T fm.—(121‘,:‘-':-;-\,z,r = 2x,
we have the ¢ -+ 1 function values #o , %1, =~ 34'% » where in general,
¢ = ¥, . Therefore we now have to determinethe approximate § so that,
by 25(2), 3.7 (ym — F(z.))* becomes d\minimum. In this method,
only the best possible approximation of the discrete function values i
important; we are not concerned with the(rest of the path of the function,
Under certain eircumstances this eafi Jéad to very sharp deviations for
the intermediate values, if these iftérvals are not made so narrow that
large intermediate oseillations areavoided.

We take as the approximation function

¥=a, + a cosx-l-fc;ig cos 2x 4+ a3 cos 3z + -+ + G, cOSNT
{1}
+ blﬁin}sc+ b, sin 2¢ + b, sin 3z + -+ + b, sinna.
The minimum condition, 25(10), leads o the normal equations

g

.\‘Z%ym — Hz.) = 0,
.~~ ¢ )
(N m=x m=12---4q

(2}\:;’:‘ MZ_; (ym — Tlxw) cos Iz, = O,
O 1=1,2.-n

AN 2. 4 — Flz) sin e = 0

/ This gives 2n + 1 equations from which the 2n 4- 1 constanis g, **° ;6
by, +++ , b, are to be determined. Now the entire problem has a meaning

only if 2n + 1 < ¢ + 1 because the ¢ + 1 values 4, , -+ , ¢, should ap-
preximate the function ¥ as closely as possible. But if more than ¢ + 1
constants appear in this function, then there are an infinite number of
ways Fhat § can take on these ¢ -+ 1 values. The determination of the
coefficients iz then no longer unique. If 2» 4+ 1 == g - 1 the total error
ean be made equal to zero; ie., [y, — y(z)* = 0. li2n + 1 <g+ L
then it is only possible to reduce this value to s minimum, not zero.



HARMONIC ANALYEIS OF PERIODIC FUNCTIONS 335

2. For the simplification of the normal equations, we must observe that
inthe cage | < ¢

m=g

{3} ZSiI.I Iz, =0 and E cos'lz, = {g,
-l =1
according as I i zero or has another integer valie. The equations (3) are

ensily derived i we join them together by use of the Euler equation ~

(32) e'* = cos ¢ + 1sin . A
2N
Thia gives R
3b) 3" (cos Ix., + isin lz,) = et = > R
m=t m=1 mol '....
L W
If we now set e‘.”z"fﬂ = r, then we get .";}\
wme=g .re \ rq _ 1
Eelm”=r+"2+""3+“':k';~§~='rr__1
(3¢} _ A\

_ gifuawse) P
=€ JRIEEY ¢ i
For all cases in which I < g is notzz};fl“b, the numerator of the fraction of
the ight side is zero, while thedenominator is not zere. Therefore the
sum (and consequently its regl’and imaginary parts) is zexo. But if 'I =9,
then r = ¢**@*/9 = 1 sosthat the real part of the sum is g, while the
imaginary part is againd S ~

If we pow substitite 1h (2) the expression (1) for ¥, then sums of the
products of the t,rigo’pohletric functions sppear. Thesc? can be transformed
by use of the equiations (3). Let «, A, n and s be any integets, and let, say
¢ > A, then ()7

&
il P N/

Eﬁﬁx Kl SID ATm
N

4

1
2
<\f“': Ofor k # s-¢g £ A
gforx stg+ M AHER-
@) =
: gforx=3'q—>\ AHER
gfor k = s g==Xh A=70"

5 coste — Nan 1S5 coste + N

1 m=l

B K ]

l\?"ﬁ‘)
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3 05 Ktm €08 AZn = % Z; cos(x — Nan + 5 2 cos(x + Nz

m=1

Ofore = s g+ M

q = 5 .4 -
_ Eforx srgEX ARy A

gforxk =8g% M A=n_ é,‘“

m=q

1. n'au’
Y sin «x, 008 ATw = z gin(x 4 J\)a:.,. +, § sin(x — Mg =

me=i n-l
1f we substitute this in the normal equat,mns, then these become, for

P<a N7\
- ”’.\ v
;y‘n = gty :::,o’

{5) m=g L\ "::}‘ w=g
> Y cos az.,.ffg‘a, , D ymsinls. =10
m=1 RN el

e
(ﬁ) :s\ Zl( l)yu_qaw"!'
If we colléefthe equations (2) with ag , === , @y, by, +++ , be, then we
get I
’\‘
w 3 G — F@Faa) = 0.

:w The expression for the sum of the squares of the errors is trapsformed by
9 the use of this relation as in 25(16); it becomes

=

@ My = 3 G — T = 33uh — 2 Ha)

and if we consider the equations (4), it follows, if n < ¢/2, that

n=y

® Moo= Lvh ol +alb b bad 4B et B

If n = g¢/2, then this becomes
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m=g l

M, = Zyi—EQ(%3+af+bf+a§+b§+
U] m=t

+ @iy + b, + 2a).

4. In each case it is practicsl to choose, as the nunmber of function values
to be used for the caleulation, @ number divisible by 4, ie., to set ¢ = 4
since then the values of the sine and cosine are repeated in the four quad-
rants and we can combine certain function values at the outset. Further-
more, if we assume that the number of coefficients to be detefhitted is
equsl to the number of function values used, then M, = 0, and the normal

equations (7) and (8) become K ~y
me 4k medi 5 {’
2 Un = ao-dh, 2 (DY = Gea“gt'.\
=i m=l /
medh x.\\:

{10} > Y 08 bz, = a;-2R &
mal . .N \

=42, -, 2h — 1.

m=dk & N
> Y 8in b, = b;-2h | 0N
mwl W

Because of the great importa.nce:ﬁf harmopic analysis for applied work,
4 series of processes have begn worked out to ealeulate t‘hese surms a8
mechanically, and with as l&ﬂe computati9n work as possible. E.rs‘t we
¢hall deseribe & method for the graphical determination of the coefficients.
1f the equidistant ordifiabes are given as lengths, then we can obtain a
and gy, simply by siperposition of these lengths on a line In the direction
determined by the;:aién. From the other eguations we jom the two terms
with each indpxi .,

\ wt=dh madh

O\ . . il
(10a) %;_+ iby) = ):‘1 yulcos Iz, + isin lz,) = ?11 T

o . ilem -—l)re“{z'ﬂﬂ 80
Tolessen the graphical work, we observe that ¢ .(
'ﬂﬁ:\if we form the ordinaie B:]ITLS and differences according to the sche_me
) ;

v wm ¥ Yus Un
Yans1 Yanez Yah+s e Yan-1 Yan

{10b) s
& S 85 s Baa—1 San
dl dg d‘d war dza—‘l dz}.

we can also write the above sums
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m=2h
2h{a; + b;) = Y. dne''™ forodd I

fe=1

m=2k
Oh(a; + b)) = D, sa¢’ " forevenl.
mm]
The d,, and s, appear here as vectors which form the angles L, with the
positive = axis. If we add these vectors, the vecior sum is 2h(a} + i},
For each value I a polygon is determined which gives the jwo. enefficients
with the index 1 as the components of the final vector, ‘R'i? simplest 1o
mark the directions on a circle about the origin, which form the angle
z. = 2rm/q with one another. In the case of twelteiordinates, therefore
h = 3, we get the directions of the polygon sides sifaply by a parallel shifting-
of a drawing triangle with the angles 30° and:% ®, For a larger number,
say 16 or 32, of equidistant ordinates, we ¢all’ obtain the directions con-
veniently with the direction ruler of vqn\\S;},nden.‘ Following a suggestion
of Groeneveld,” we can also use spegjglpaper for the construction, which
has parallel bands in the necessary jdirections. The individual lines of
these bands are so close fogethemthat a strip of transparent coordinaie
paper, on which the lengths s.tand d., are plotted additively {on a longi-
tudinal line placed in the gbrresponding direction), always covers one of
the parallels. In this wayswe can give each of the lengths s, or d, the
appropriate directionsat each point of the paper. For the determination

O I
po &/ | 1
P
N\ ’ \
| \\/
L S LA L L L L B L
& /4 2
Tra. 114

of & coefficient with odd index, we start from the origin and draw the
length d, in the prescribed direction. This makes an angle Iz, with the
positive z axis. We fix the endpoint of this by sticking a pin through the
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paper, turn the strip through the angie Ix, , and then determine the end-
point of d; . We again turn the strip about this point through an angle
iz, , ete. In this way we get the endpoint of the polygon, and consequently
the coefficients &, and b, without any further drawing.

6. Example: Twenty four equidistant ordinates of the blood pressure
curve (Fig. 114) are chosen, and the sums and differences of thesq\
are formed. The following values are cbtained \

§: 26,060,138, 136, 90, 68, 66, 60, 45,29, 21,16 ¢\
NS ©
d:~—16, 0, 76, 82,50, 32, 32, 30, 23, 17, 15, 16\

.
< 3

D
L g i1l

<
»\%
+
P8
I‘I‘I$IIJ!|_|_[H IETUAT

& Fig. 115
” l"liflé 'coeﬂicients, up to the ninth, are constru cted in Flgs 11_5 &111(15 i ;5-.
\\: Th Fig. 116, for the sums, the unit is 1 /8 mm., while in Fli 116, ‘::2
the differences, we take the unit as 1/4 mm. From the figures
obtain the following values:

6 = + 07305 = —16.1; a5 = —11.6; a5 = —1L.5;
by = +23.8; by = +16.5; b, = — 0450, = — 46
Gy = — 0’2; dy = + 4.8;0-7 = + 4'3; Iy — + 2.4.; g = + 0.4!

+ ]_.8; bg = + 2.2.

by = — 00;by = — 53; b =+ 03;bs
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7. The caleulation of the sums {10) becomes completely mechanical if
we use stencils, as suggested by Hermann.® Zipperer, for example, b

prepared such stencils for the ease of 24 ordinates. The number 24 i

L 7 ey

1a. 116

~/ useful becsuse a large series of the cosine and sine terms appearing in

th
oneti:ﬁa:: t:-enTl;lecomeS zero. The tables consist of a base table printed
£0.986. in EJ 6 [he 24 ordinates and their products with sin (£75°) =
+0.5 and sin (:i 1053 = 20.866, sin (£45°) = £0.707, sin (+30°) =
The values which ha) —b:|:0.259 are plotted in the corresponding squares.
right and those whjc‘ileheen muttiplied by the positive factors are on the
on the left. The & ave been multiplied by the negative factors are
initially. To 8 .dqg.ares with values not heing considered are blackened
z axis so | e lfﬁmltues with the sign of the ordinate, we draw the
ow that all ordinates are positive; ther this o nl;' changes the
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value of ao . For each of the coefficients a, , b, , --- , a,,, by, , & special
sheet is prepared with colored regions for the produste which oceur in
the sum for the ealculation of the coefficients involved, on the left or
right side according as the trigonometric function which appears as a
faetor is positive or negative. These tables are placed under the base
table and the numbers lying above a colored field on the right eide are
added together. The same is done on the left side, and the difference of
the two sums is formed. If we divided this difference by 12, we get thie
coefficient in question. The results for the above example are in

(®ood

agreement with the values found graphieally: S/
& = + 0.706;a = ~16.535;a, = —11.590; a, = X 11.416;
b = +2BET1; b, = ~16.680; b, = — 0.216; by — 4.616;
= — 0199;a = -+ 4.833;e, = + 4.487;"5,’; + 2.178;
by = — 8.843; b, = —~ 5.333; b, = w.,({\z'sw; by = + 1.875;
gy = + 0426;a, = — 0.676; a,; =% 1.326;

b = + 2.193; by = + 1.237; bu(S'F 0955,
In this case we have a, = --31.583; a2 —0.583.

8. Computation work is reduced'if; from the outset, we group the ordinates
which are multiplied in the siitas of the egquations (10) wlith the equal
positive or negative values of the trigonometric furction, and if we c'alculate
the coefficients with th sxuns or differences thus obtained acscordmg to &
scheme of ealeulationhas was given by Runge® or Whittaker® for 12 and
for 24 ordinates. Hsré«é.. = 2xm/4h, therefore

006 Lousn /008 [(th — m) 2 = cos (1:2x — ln) = 005 lom

N

il = sinl(‘ik—m)%ﬂ sin (-2n — le,) = —sin I2a .

AN _
/Thelast two equations of (10) can also be written
n=2h=-1

E. (y!!l + yu._...) cos [, + Yas COS Ir + #w COE ol = a;+2h,

m=1
=R

35" @n — s sin I = b2,

m=1
. 3 to
since sin lr = sin 2l = 0. If we now collect the coordinates acg:::lc:gthe
the following scheme for sums and for differences {where we sit ;
lower series from the upper),



342 PRACTICAL ANALYEIS

1 Y Y2 T Yan-1 Yo
Han Yen—1 Yar-2 Han—3 e Y2ne1
o L5 o2 o3 e Tt .57y
04 Bz i e Bga1
then the last two groups of equations (10) can be writien \
Tk mm2h1 . A\
(11 S on €08 ltn = 2ha; ; S 8. sin Iz, =N2AD7.
m=l mel s N
If we now observe further that '“"' ™

€08 Izen-m = o8 l(2h — m) 2r cos(lx — Iz,

A\
cos Ir cos Iz, \gm\la-rsmlw = Foeos Iz. ,
(11z) .‘ » .
sin lra_, = 8in I(2h R m} = = gin(lx — Iz.)

"s

3

= sin,'?g?;dbs Iz, — cos Iz sin ly, = =sin n ,

where the upper sig:{l‘iwlds for odd values of 1, the lower for even values,
then the equations (11) are
™

=
;;' (am ¥ 0'2»-,..) el Iz =+ oy coB E:l:,, = 0" 2h
1y N
:1\..0 smi=1
N\ MZ‘, (6 == B2n-0) SID IZm + & sin lz, = bi-2R.

AN .
_Jf, e now combine the sums and differences again by the following scheme

N
any

'\
<\~ W L) 71 Tg . Ty Ty 61 52 e 5!—1 65
(llc) Fap Ozh=i Tzh—z " Tyl Gaa_1 fBua-z © B ’
ady GO, OFy ' G0y, O0; @b ob coe o8 oh
$op by dore LRI, S 86, &8, ver Sl

then the equations (11) and the first two equations (10) way be written
a8 follows, if we set o8, = 88, = 85, = Eo-, = 0;
a} for even values of [
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ek

Z oo, 008 Ir, = a;-2h

m=ll

m=h

3 38, sin l,

sl

by 20
(12a)

M=k m=k

2 60a = g, 4h, > eaa(—1)™ = ay-4h;

m=l m =i}
b) for odd values of !

=k . . 2\

> éa,, cos iz, = a,-2h £\

m=0 N/

(12b) (T =1,8, -+, 2 — 1)y

I

m=h

“Z_; 78y 8N v, = b2k RS
In the calculation of this expression it is advisable a.ljvajrs to caleulate the
" coefficients b; and bai_; , and also ¢, and an_;;silmzltaneously, since in
this way equal preducts always appear, only, with different signs. If we
write the products with one sign in one colamn and those with the other
in & second, and add the columns, then we need only add or subtract these -
sums inorder to get the two sets of coﬁﬁcients.

9. The surest check for the correcthess of the caleulation is that we
again ealeulate the funetion valuesitsed for the original computa,t-io‘n, thfs
time using the caleulated coefficients. By addition and subtraction, it
follows that AN

Y =%+a;\§%i+ ces @y cOS 2has T b, sin 2, + -

¢} + bar-: sin(2h — ..
A\ S

yu—m."'%l}on"i' @; CO8 T, + - @2 COS 2hz, — b1 8 Bp — C7C

Nl - by in(2h — Dzn
' \’
\ﬁ%c):zgm — gy + @, co8 2y + Gz 08 9z, + +- 4 cos 2han,
? m=1,2-2v— 1.

'1";’ 5, = bysinz, + b, gin 2z + -+ bap-1 sin(2h — 1&n

Moreover,

(120) g, = ap + @y 008 T + G2 €08 2Tm + 1 4 gy co8 ZhTn
(m =0, 2h).
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These equations are copstructed exactly as were the equations (11) snd
the first two equations (10), i we introduce the sums of the ordinates
. . The quantities 1/2¢,, and 1/25,, can then be computed from the o
efficients according to the same scheme, a8 the 2h-fold coeflicients from
the sums and differences of the coordinates.
To get a more rapid check, we can start from the minimum condition.
If the number of the coefficients is equal to the number of the ordinates,

then by (9), \

1
N
2\
"\
L 3 N

+ ok + 2a + b +f53'~‘«+ oo bR =0,

If the number of coefficients is smaller, théﬂ\on the right side, we set
4., and b, (which are pot calculated) equal to zero, and get & measure
for the aceuracy achieved with the value.of M. This equation ean now be
divided into two equations. Since \

wiw-dh
M=) yh— 20205+ a + st

m=i

(12¢)

1 :’.': ’ -
FRTIRPIUE DRI & CIIS VNS JUp P 3
(120

Nm=1,2,- 2~ 1),

~

the above equation, ,éau':i.lso be written

TN
1 l:i L meIh—1 )
A+ 58 At} 8~ e+ el
me- ]
{122 H.‘.
W& P P=gi-1 I=ah=t .
O —2h 3 al—% ), b=l
(N T=1 Tai .

s :

’gﬁ"f the coefficients o depend only on the quantities o, while the -
_ (#ficients b depend only on the 5. Consequently this equation can be
% broken up into two equations

"\
w\\' w mmih—1 lmgh=1
\/ o + oo + 5 mzﬂv,’;.=4h(a§+a§,.)+2h g_‘,l ol
(13) )
1 e Th—1 [=gh—1
3 >, =2k 2 b
ey i=1

If we want t0 use these formulas as a check on the accuracy of the caleu-
lation, we must ealeulate all the squares with the same absolute aecurssy)

since otherwise the errors of the larger squares outweigh those of the
smsaller ones,
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10.. In many cases, we are able to express the path of the function with
sufficient accuracy with 12 equidistant ordinates. If we set ¢ = 12, so
that h = 3, then we obtain the following 12 equations from the equati?ons
{12) for the calculation of the coefficients. Here we replace the trigo-
nometric functions by the equivalent functions in the first quadrant;

12a, =
ba, =
Ba, =
6a; =
Ba, =
6a; =

(14)
12, =
8b, =
6by =

6b, =

-6b4 A\

#

which is

!

o =

6oy - ooy + 002 + oos

ay 4 8oy cos 30° 4 do, cos 60°
g0y — aos -+ (o0, — cay) cos 60° . £\
doy — b0y N

7

a0y + ooa + {—oo; — o0s) GOS'BD}

7

\\

3

Sa, — dory cos 30° + Suy 903\60“
aey — o0y -+ aos —¢ ﬂt’:;
o3, sin 30° + obs jéin"ﬁo" + ¢85
(58, + 55,1’55’&0“

(o8, \9%:)

(}a} _ 85;) sin 60°

o5, 8in 80° — o8 8in 60° + o .

o) ,
These n%iﬂations can be carried out by means of the scheme below,
self “explanatory, except that it should be observed that in

the placesh characterized by sonds. , ebe., we do not have these values

.

< > Caleulation Scheme
Ordinates__ | Sums Differences
U Yo YaYaYs¥s} 0 01 gz o3 61 B2 G5
g Y1 Hho Yo Ys Y7 o5 U5 T4 &8s B
R o, 0y O3 O3 Oz 0 Oa) 000 005 002 aos | o8, alz ads
Differences - - - -« 5 B3z 8 64 65 Sag a1 boa 55, 56
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Cosine terms 207
cos O =1+ -+ - - * erore; ) o _ &
o005 800 4 ooy~ oo dog— do2 o &
cos 30° = 1 — 0.134 o3 ' o1 5
cos60® =05 - - - box |—oastoos urf' &
Sums - : - - - - [ NI IIL mr I \a'i\ &
Sums T+ 1T - - - | 1%a0| Ga, | Bay | 83 o 9
Difference T — IT - | 124, | 6as Bas [ - | 1]
49 [ L J o
O
Sine 1;131';3:1’&,\w
sin30 =05 - - - |o& DY y=aoto 008zt a0l
sin60° = 1 — 0.13¢ | o8dae.85, +aseosBa+ascoske
gin 90° = 1 RN dasv.: v o8, — 0, 4-a5cos5z-+-ay00s6z
Sums - - . .. - Bplr py qp Tosie Then
Sum I+ 1T - " | 6b, | 6b | 6h bsinda +hshls
Difierence 1 S arary tbsinde.
| AGay | (65% |(6a)*-(6b)|(6r)°:36] 1 [tge = a Qua- @
T 13~ b drant .
Q.;\o 5(1200)°
O SU o] eay | @y | B | e s |«
2| 6o G0 | @) | A | n| e @ | o
31 ®a)| (60| 6 | A || 5w 2
41 (Ba)?| (6b)° { (6’ 2| r | tge o | w
5| (o) 6 | Orf | r5 | r ] tges 7 | o
6 [212a.°
[6a)"] | (66" | 1 ,
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Ordinates

4.1 —
0+314+ 73+

7.1
7.2

76 —~46—-04
+ 42422

Sums 64+1 4+ 324+ 01— 34—24— 04
Differences - — 52 —114 — 143 — 118 — 6.8
.\‘\
Sums l Differencer *
-0 +1 +32401|-52—114— 143
—04 — 24 — 3.4 —6.8 — 11.8
Sums —04—14~024+01192"~ 232 — 143
Differences « - +04 + 34+ 66 ,\\5[-1.6 + 04
’“j\..
Cosine t6rms
es0P =1- - - . —0.4 _1-‘% :
—0.2 +0.1}M-04 —0.4 —014+04 —6.6
cog 30° ="1 — 0.134 A\ +2.94
c08 60° = 0.5 XN\ +3.3 +0.1_—0.7
Bums . . . . .- 006 —13437 +2.94-03 —08+04 —6.6
Sun I+ 1T 50 [120, = —1.9l6a, = +6.6460, = —~1.16a; = —6.2
ra\%
Difference I I |120, = -[-0.7{6% = 40.76/6a, = +0.5
<\
Ay
X\‘ Sine terms
sin 80° = 0.5 —8 -_——— "
sin 60° = 1 — 0.134 —20.09 | +1.394+035; -
_ 143
sme =1 .« - - - ~14.3 g 114 3
Sums - . - .. .. | =203 ~20.09 +1.30 +0.35 — +23:
Sum I 4+ 11 Bb, — —40.39 | 6b, = +1.74 | 6b; = 22
Difference T — II - - | 6by = — 0.21 | 6by = +1.04
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y = —0.168 + 1.107 cos o — 6.732sin ¢ 0 |
— 0.183 cos Z¢ 4 0.200 sin 2¢ 1.00] 27
— 1.033 cos 3¢ + 0.383 sin 3¢ 10.24 | 120.9
+ 0.083 cos 4¢ + 0.173 sin 4y 0.01 | 20449
+ 0.127 cos bp — 0.085 sin 5 11.56 | 130.16
+ 0.056 cos G 53761 4624
0.32
2889 | 54680
,{.28.88 | 546.03
N
2 2 2 2 2, T‘ . Qua— -
®a)° | (8b)° |(6a) + (6U)|(6r)*36] o Ylge=y| i ol ¥ | ¢
0| 181 ’
1| 4400 | 1631.35| 1675.44 48:9}0 6.822|—0.164] 2 | 031007
2| L2 3.03 4.2400)0.118 [0.344(—0.632 4 8233217
3| 38.44 5.20| 43437 | 1.215 [1.102~2.608) 4 |e9.6i290.4
4{ 025 1.08 | 3133 | 0087 [0.192+0.481 1 125 256
5{ 0.58 004 [N\N° 062 | 0.017 0.130—3.620 2 [74.51065
6] 025 R\ -
86.63 | 164079 |

N

themselves,/ but their products with the trigonometrie function values
a;:!peayigg at the beginning of the row. All calculations except the raultti-
p%ﬁﬁ‘on with sin 60° and cos 30° can be carried out mentally. We use
the "slide rule with these latter multiplications. However, we do not

\nultiply by 0.866 but, because of the greater accuracy to be obfained,

Y

% we multiply by 0.134 and subtract thig value from the initial value. The

ca_.lculation of t.he .coefﬁcients can be made with & single setting of the
slide rule. In addition the scheme still has space for the check given under
(13). Finally, & scheme is also given for the calculation of the cosine and
:;:le sene]a: 1::1 a series of the form 3 7. sin (g + w:) which therefore has

e amplitude r; = {a} + b and the phase angle ¢; = arc ig &/
for the individual terms. phase sngle g1 = are 18 AT

11. Eza_mple: le'n the oscillogram of an alternating current wave,
the following 12 ordinates are taken, measured in millimeters:
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th = —2.1 Yye = —7.6 s

+2.2 yo= 7.3

{ida} y. = —4.1 ¥s = —4.6 ¥ys = +4.2 ¥ = 3.1

Y = —7.1 W = —04 Yo = +7.2 Yiz = 0.
{See page 347.) By use of the amplitude and the phase angle, we get

= 0188 + 6822 sin (o + 170.7) + 0344 sin (2o + 327" 7)
{14b) 4+ 1.102 sin (3¢ + 290.4) + 0.192 sin (4¢ 3!*\25:6)
+ 0.130 sin (3¢ -+ 105.5) + 0.056 cos@}‘

12. In many cases it is sufficient to determine the ﬁrst}uejﬁczents of the
expansion. If we pick out ordinates at arbitrary pliess’ ‘on the graph of
the function, we can determine the coefficients in \,

¥ =0+ ¢, cosx + @ cos2z -bas cos 3z

4+ b, sinz + bz sm2x—i— b; sin 3z.

This method, given by Thompson,’ req’uucs only addition, and no multi-
plieation, From the equations (14) we get, for g = 12,

1 w12 N

%= 15 2 0%
N\ |
(15) Gy =.\‘,"}5'}("Ly2 + Y — ¥a -+ wa — Y + yu),
x>

\*t)»;=é(y1—ya+ys—y7+ys — ¥u)-

- I we }JDW substitute successively in  the values =/2, 3w /2, 6 and =, we
&

yszao—ag—l“.b]_'bSr

ys-:.:ao-—as '—bz_'i"b:i!
(16)
ag+al+az+as;

Yo

yn=ao._al+ag——a3.

By subtyaction of the first two equations, we get
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1
an by = 3 (s — %) + ba.
By subtraction of the last two,

1
(18) o = E(ya — Yo} — ta,
and by addition of the last two equations and subtraction ©f\the first
two, we find V

2\
1 S\

{19) % =3 o — s+ ¥s — ?}n)-Q g >

To caleulate b; , we must start out from ano é;:."interval division. If we
denote the function values for the arguments /4, 3x/4, bx/4, Tr/d by
Yarz 5 Yorn Yi5s2 Yaisa &nd Su]:lst-itute f({‘.:h = 2 in the equaﬁon(l[]} de-

termining b, , we find AN
. ’..‘\ v
(20) by = Z (a2 "tj:'{e};e + s — yzlﬂ)-

By this formula, we get in thg above example,

2o = —0.158; ap='—1.033; by = --0.383; b, = —6.767;
(20a) L
a =:~~7}1.233; a = —0.125; b, = +0.175,

71
\

in satmfactqry}greement with the values found in the previous section.

'13. on:}niore accurate analysis it is advisable to use 24 ordinates. For
this n(ifubszr of ordinates there exist printed caleulation formulas of Runge
Emde.®. In this case the equations (12) become, if we ransform the

¢ funetions directly, .

244, = ooo + ooz + 6o - g0,

+ 6oy + 6oy + g0}
120, = bao + o2 cos 30° + 80, cos 60°

+ 80, c0s 15° + 3oy co8 4$° + 25 cos 75°
128; = ooy — oos + (vo: — ao,) cos 60°

+ (ee2 — ous) cos 80°
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12&3 = 30’0 -_— 30‘4
4 (b — 5_0'3 ‘— 80s) cos 45
12a, = G:Tu 4 o5 + ('-0'0'3 - 0'0'4) o8 600
— ¢d3 + (0¢, + oos) cos 60" N\
A\ ¢
120, = 8oy — Bas cos 30° + 8a, cos 60° R
« \J
4 Ba, cos 75° — 8oy cos 456 4 8oy cos 1581
N
12as, = ooy — ooz + ooy — o0 \\\
1%z, = 8o, — Bas c08 30° + 8o, cos 60° x'\\>
LV
— 80y cos 78" + &y eo&;.,‘é&"} — 305 cos 15°
12¢; = ooy -+ ooy + (—o02 i~3x:)§;} cos 60°
+ ooy + (uw\?f‘:aou) cos 60
A
120, = dou — d0, ’.\m,\
£ \ /
+;‘g‘_\s¢1 + 803 + Bay) cos 45"
t'\:nl
12a,, = g‘{i}‘—, a0 - (oo: — 004) COS 60°
i)
’\‘3 + {—ov, + oue) cos 30°
QO
2, = dou + 89, cos 30° + o cos 60°
a\%
/ : — &0, cos 15" — B0, cos 45° — bas c08 70

20y, = o0y + 0oz + oo+ 004
— go, — gUy — 005
126, = o, sin 30° 4+ b, ain 60° 4 ods

f )
+ o8, sin 16 + o8, sin AB® 4 a8y sin 78
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12b, = (83, + 85,) sin 60°

+ 88, + {38, -+ 85, sin 80°

128, = ob; — ods

4 (631 + o8 — a8s)sin 45 I\
136, =.(88 — 83.)sin 60° Oy
:,‘\\ o
+ (88, — 835) sin 60° ~\
A p |

12b; = o8, sin 80° — b, sin 60" -+ qae'(."

+ ¢, sin 75" — 65\8111 45 4 o8, 8in 15°
12b, = : \‘

88, — 653 + 805

125,

—aé, sm?nﬁ" + o8, sin 60° — o3,

+ nrﬁl sin 75° — a3, sin 45° + o5, 8in 16°

m

126, &4 r—'a.s, + 33,) sin 60°

oY + (85, — 58,) sin 60"
2N
- 3’3\1’269 = 7062 =+ o dg
;{\ + (0'61 + aé; — 0’55) sin 450

12byo = (— 58, — 88,) sin 60°
+ 88; 4 (85, 4+ 88;) sin 30°

125,,

— 8,80 30° — 25, sin 60° — o4,

+ oéy 5in 15° 4 @3, sin 45" + od; 810 75"

In the first half, the summands are listed which contain the ordinates
}vith even index, while in the second half are those with ordinates of edd
index. Now the summands from the ordinates with even index in the
coefficients g, , --. , gy and b, , ... , by agree exactly with the values of



HARMONIC ANALYSIS OF PERIODIC FUNCTIONS 353
the equations (14}, if only we replace the index I by 2I. The same summands
are repeated in reverse order with the coefficients o, to a,; with the same
ggn, abd with the coefficients b, to by, with the opposite sign. These
portions of the sums can therefore be calculated by use of the scheme
given in See. 9. From the ordinates g2, ya, #s, - -+ , Y0 We then get values
which may be denoted by 12a; , 6, , -+ - , Gz, 12004, 68, , --- , 68; .

Furthermore, it is then only 2 question of the calculation of the part
of the sum which depends on the ordinaies with odd index. These sums
mands alse repeat themselves—those from a, to a; with cpposite signs.in
reverse order to &, to @, , those from b, to b, in reverse sequence mt’h‘the
same sign as those from b; to by, . For the caleulation of this part, of the
coefficients we return to the summation form. From the odd ordmates we
get

m=i2 = moi2 "‘\\
122, = E Yem-1 128, = Zl Yameh §in 6231 ,
m=1 L \ %
m=1% “'\’;.
22) fa = Z Yam—1 COF [Tgm_1 2N/
mwl
@ =152, 5
malZ AN

ﬁB; = Z Yeim—i sin E.’l:g,,_l :“ o

-l al

These expressions can be taansfoj‘me&. If we set

(2} {é.,,a = Tow-s + Ts ,
where .n:, = /4, and introduce, for short,
P4
12a{\-— Z Yom—1 COB [ (tl=20; 8)

il

A\
\‘\\" m=12
@) AN Bl = Y Yom1 €08 anos

el

; ' w12
A% 68 = 2. Yam—1 SN IZ2ws
m=1

i et
sums which ean be calculated from the scheme for 12 ordinates, we &
128, = 124} ' 128, = 0
{25) 6 3(2)" et + a7
-

3(2)(oh — BY 68

4

66, = —68; 68; = +00
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b = 3(2)"(—ab — B B8 = 3(9)"ef — )

68, = —681

32—l — 89

6, = —605:
63, = 3(2)(—al + BY) 68, =

125, = 0 128, = —12a} .

To calculate the quantities of and 8f by means of the scheme far 12
ordinates, we must collect the ordinates in the follomng way\

. Us Yz Yo ¥ ; Y M?}u
(258.) & ‘3«:

Ya h Yoz Yo ¥1e ,\‘ng
Then we get
m=12 m=lZ
2 Yanea €08 Wan = 25 Yan-s cQslxg,,._ =12 (=08
me] mei
=32 me12 AN
(26) E Y2mss COS [Tz, = Z yg,;._, 08 {3m.s = O
propes' mely
=15
nel2 wr-m
Z Yamsz SID lxz 2 Yem—-1 SIRt Iom-4 = 68
m=1 m=1

The change in index is allowed because of the periodicity of the trigo-
nometrie function ‘and the function to be approximated.

Therefore, & lﬁKt the coefficients for 24 ordinates, we apply the scheme
in Sec. 10, ﬁtst» on the even, then on the odd ordinates. Furthermore, we
then use the iollomng arrangement;

§\ ﬁaf 6ar} 6o
\ 651 63; 664
2y Za 2
4, Fa Ty Ag
- 1 ~ 1 i
N S ba = @ oy = — PG &y
4 1 = 1 - 1
66, = (2)* z 68: = + W Ay 68; = — W Z;
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1204 By By Bos Geary Go;  Bae
1206 62y —68i 6& —6af b6a,

Sum o+ - o+ r o - - | 240y 124, 12a. 124, 12a, 12a, 12a,
Difference - - « - « { 24a,, 120,y 12a, 128, 120, 124,

68, Bai 68, —68, 68, —12a}

68, 6B 685 68, 68 N,
R\
Sum - - -+ -+l 12b, 126 126, 125, 12b,~32b,

Difference - - - » » | 12by, 125y, 12b, 12bs 1{3&‘7‘.

For the reduction of the series thus sct up into @\3efies of the form
Yr. cos (lg — ¢.), the corresponding scheme is Ka-lid, which was given
on page 347 for 12 ordinates. Likewise, we can a flv the caleulation checks
given in Sec. 9. An example may easily be work . through by the reader.
Finally, an apparatus should be mentiofied which forms the products
entering into the sums (7) mechanicallyy and also carries out the sum-
mstion mechanically. This is the an@lyzer of Michelson and Stration'®
which, for example, ig carried out foi\ 80 ordinates. Because of the relations
given at the beginning of Sec. &, this spparatus can be used not only for
analysis, i.e., for the caleulatiofi'of the Fourier coefficients, but also for the
synthesis, i.e., the calculatioﬁ’& the funetion values from the coefficients.™
_ R
Py \ NOTE:S
1. v. Sanden, Z5f (Mlafh. u. Phys. 61 (1912-13), p. 430.
2. Qrosneveld, £. ¥. angew. Math. . Mech. & (1926), p. 253
3P rehin. . 45.
4, pri’::%ﬁ&f;n i:‘gfg}:f;nfgni:c?wﬂ Analyse periodischer Funktipnen {Berlin, 192'2).
(The tableffor ‘4, containg numerous errers.) Earlier tables were compiled by Pollak.
5. Riloge, 4. . Math. u. Phys. 78 (1902).
’Mﬁi{whittaker and Robinson, The Caleulus of Observations,
7. Runge, Z. f. Math. u. Phys. 48 (1903), p. 415.
8. 8. P, Thompson, Proc. Phys. Soc. London 23 (1911}, p. 334 e
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sch gegeb-

30. Representation by Exponential Functions.

. 3 idera~
1. The spproximation by exponential functions comes into consIde:
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tion in three cases: first, wherever decay processes are involved, such s
radicactive processes, cooling, etc.; second, in decay processes with damped
oscillations, as is found in charging processes; third, with phenomena
which arise by the superposition of purely periodic processes whose periods
do not have integral ratios. We find the latter in the brightness fluctus-
tions of variable stars, the ebb and flow of tides, or in the oscillation
processes in the production of vowels and half vowels. The distinetion for
the representation of such processes is only that in the first case we deal
with exponential functions with real exponents, while in the.second and
third cases the exponents are complex or purely imagin\é,t‘y. It by v, we
indicate arbitrary real or complex quantities, we can form the series

(@) = C,Ce™ + Coe?™ 4 CaeliF)-- - .

This series is more flexible than those used, previously, because the indi-
vidual approximation functions themselvés‘eontain the constants v, stil
to be suitably chosen. First, if these constants are fixed, the functions to
be used for the approximation are f u’u&, and then, if necessary, the co-
efficients C' are determined by the pn?x%iple of the minimum.

2. It is of great importancefor the application not to carry along too
few exponential functions. Jn\many cases we shall so control the prooss
to be represented that welean determine the number of the terms of the
approximating functisn 16 be used. In other cases, we shall be able to
determine the numberfrom the path of the curve. In the most importani
applications, thrge.or four terms will be sufficient. Therefore we shall limit
the discussion Rete fo the development of 3 summands. An extension to #
terms follows :dil‘ectly.

Therefdré“we consider
9. N
(1) ¢ F@) = Cie™ + Coe™ + Ce™™.

For®implicity, we assume that the observations are equidistant, and thab
«Jthe difference in the successive ahscissas is . The value of the mth ordinste
» of the function (1) is then

(1&) g_ . Cie‘ntsn-(m—l)kl + Cze-y;ln-i-(m-l)a\l + Cae'nlzﬁtm—l)n]’
or, if we use the abbreviations

Tk

Tk __
et =y e’ = g, e = uy

(1b)
e Iz 4 {m=1)4] m— -
e’? n fl ; Cge’rnlzrri Al fz; Cae'r.l:ﬁ(m 1341 _f“

then for 4 equidistant measurements, we have
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Un=FH +Ff + 71

Y1 = Sritq + fortz + Farte
@

Yotz = f‘suf + fzui + fsug

Ymea = f‘u:: + ,fzui -+ faug . N
under the assumption that the actual value y agrees with the valqes"g' of
the approximating function. Q&

In many cases we do not know the zero line to which the pmqe&é\deéays.
Consequently there will be a term » = 1 in the above serieg; t.e., the

eorresponding v = 0. We must therefore carry one additicnal term.
Tnstead of the series (1), it is better to begin with AN\
(28) T = Co+ Cie™ 4 Ca™™ + Cppl¥

v

. (N . . .
To avoid the greater work of computation which arises in this case, we
¢sn form the difference of two successive oxfinates for the elimination of
C, . Then, instead of the equation (2) we geV/

Buwam = Fi = 1) + Jof= 1) + Filte = 1)

Baviorm = foltn — Db foltts — Vs + Jalus = Vi
A i

Apean = Sl %"1‘}“’: + falwea — 1)'-'1; + falus — Dus

Bpsc2r2y =.'f1i”j-1 - 1)’”-? + foltiz — l)u’? + Sl — l)ug !

\X : '
in which we mmi’trﬁse five successive function vaiues. The & equatmr;? (ﬁ)
or (3) for thé\3 quantities f, , f2 , fs can only exist sunul‘taneously :h e
dﬁmﬁa!\l&"{)f the coefficients iz zero. This gives a rel_atclon between the
U, U ;fiis and the ¥ or A, which we also get if we multxp!ty. the follu' eqi}éa-h
tions, with the symmetric functions of these three quantities, tak :;11 w1=

"Emponding signs, the first with g3 = -~ uila¥s 4 the second Wi d‘:,sh =
\"ma 4+ WUy + uu, and the third with 8, = — (u} 4wy + s} AR

add all equations. We then get from (3) the equation

) AvviraSs + ApramBz 1 Bmem® + Amrarn T 0.

3 the A.
T we start out with the equation (2), then the y appear ]Pdiiltz(ftofinc:ion
The equation (4) is valid for each value of m; then n equl oot from (2),
values are present, and we get © — 3 equations if we sta
% —~ 4 if we start from (3):
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Ay pe8s + Agsats + Agpety + Bry =
Bys8a + Dgpfe + Arpgh + Ay =0

Agse8s - ArpSe + Agpsy - Anye = 0
(5)

. . . . . - - . . A

AN
NS
Apm8s + Ba_in®z + Aw-ambh + An-tk{!?‘"; 0.

For the determination of the s in this case therefore, st Jeast 7 function
values must be considered. In general, more va"l‘\&es.ivi]l be available. Then
we shall regard these equations, no one of shich will be satisfied exactly
(and consequently there will be a smaill yalue ¢, different from zero on
the right side of the mth equation), as e;mr}e'quations, and we can caloulate
the normal equations from according t0\the method of least squares (Art.
25): PN

{AmrasmBmeamls + [ﬁ@;:(;n)ﬁmafts;m]&z + [AnromAmesmlss

¢
N

™~ + [Am+(1/2)Am+(ﬂ’5)] =0

~

[Am+ta/2)ﬁm+(};,=qss + [Auusm)ﬁ-»nszs)}sz + [Am+tsm)Aa+tsﬂ)]31

A W
N\’

N\
Y \ + [A.H-(sfs)ﬁmﬂmn] =0
(6) ~O
[A?+<};2’>Am+(1/2:}33 + [Apstsry Ameiarn]sa + [Au+tiﬂ1A;l+($ﬂ]}s’-
10 :
KO X F [Amsim Bumstrm] =0

N/

A
2 S
=\ {Aﬁl+(712)Am+{lf2)]'33 + [Am+(7/2)Am+(3/2)]88 + [ﬂmd-(‘!/B)Anl-(Eﬂ)]sl

+ [Amcmlﬁnurm] = {ﬁ]-

In the sums, m runs from 1 to # — 4. From the last equation we get {by
25(4)) the mean error of an equation m = (([ee])/(n — 7)) and from this
the mean error of an ordinate difference

@

= [ee] v
m“(@~ﬂu+£+£+@)'

If we started from the equations (2), we would have n — 6 equstions,
since we have one more equation, and the corresponding expression (7}
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gives the error of a single measurement. If this value dees not bhecome

small, we must repeat the same ealeulation with an approximating function
with more terms.

3. From the normal equations we get the symmetric functions s, , 8. ,
& , the coefficients of the equation of third degree,. '
& 2 A4 8z 4 s 48, = 0. Q)
The roots of this equation are the desired values u, , #s , us . If this equ}ttion
has only real roots, then the coefficients are determined irom “\

& W

1 1
® vo=gnw; Yo =3 It 73=-};m1¢§.
s
On the other hand, if it has one real and two complexconjugate roots u ,
s = v = iw, then the two Temaining v are alsd ecomplex conjugates
Y23 = &« + 18, and we have \\
W\

N ST R I S

{10 @ = 2h]n(1.l + w’), B ——:E.afctgv = =

In $his case it is better to use the appméj&mating function in the form

{11) 7= Ce™ 4+ Agf':’lbba‘s Bx + Be® ¢in fz.

The functions appearing in thovterms of the approximating function are
determined by this, and fre'(ﬁenﬂy the problem is then completely s.olved,
since we are often inte}e%té’d only in the determination of the half life, the
damping decrement, the,period, ete. )

If in addition W@ ant to represent the path of the function, we must
determine the cee:fﬁcients by the minimum condition. This will be omitted
here.!

S
\

s‘ﬁ' E:wmple: In s body cooling to constant temperature, the tem-
perature T was measured z minutes after the beginning of the cooling.
£ "\“The initial and final temperatures are sought. .

z|2|i|ﬁ|s 0 | 12| 14
T l 92.4 l £6.2 i 80.5 1 75.2 65.8 ‘ 61.6

70.3
This is of the form T = A -+ Be?" From this we get 8 equations
of the form A + A,-, = 0 from which the mean value © = 0.924 &
0.002 iz obtained, ie., v = 1/2n 0.924. If we toke 10 as the ba,sie
number for more convenient ealculation, ¥ = 1/2 log 0.92¢ =
—0.0172. Tn this way, the approximating function

16 18 20

[

57.7

54.1 | 508




\
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0.0172z

T = A + B107

is obtained. If we substitute the values of x and T in this equation,
we get 7 error equations, from which the normal equations [25{11}]

are then given:
104 4+ 6.645B — 6%46=10

i

6.6454 + 4.6403B — 481,445 =0 “\

694.64 + 4814458 — 50006.4 = [ecl )

. '\ .
From these, the values A = 10.66; B = 88.487; lee] = 0.1 are cal-
culated by the methods of 23.3. We thereforedaive the approximate

representation *O
AN
T = 10.66 -+ 88.493 0"

This gives 99°.15 as the initial temperature, and 10°.66 as the final
temperature. W

S J
"

5. If we have to analyze puf-qlg;z “periodic processes of unknown period,
then the exponentials to be chogen are imaginary. In the case of the super-
position of two oseillationscof ‘different period, we then have to form the

series NN

gzA.ieaia;+Aze—aiz+Bleﬁiz+Bse—3ﬂr-

. ...\ . . af
If the ‘olﬁerva,tmﬁq’tare equidistant with interval k, we have v, = ¢ g
g = € ug B u, = e he., %, = 1/us, us = 1/ua. The equation
for the debf;t"uiination of %, corresponding to (8)

(8a) \ " Pttt s+t a=0
musp'{l?lere_fore become a reciproeal equation, ie., 8a = 1, 8 = & . The
d ination of the values of the roots can then be reduced to quadratic

_equitions. Also the corresponding equation (4) for the determination of

N ithe symmetrie functions becomes simpler, because of the relation & = L

S

8 = 83,

(48) Aniom + Bmigs + (Bprrn + Amearo)d + AniemS = 0.

The e.qua.tions are treated in the same way if we have several periods t0
combine. '

6. Ezample: Whittaker and Robinson® analyze by systemstic tests
the period of a variable star. For this purpose they use 600 funetion
values which give the magnitude of the star at midnight on 600
successive days. The unit is arbitrarily chosen. These observations
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are represented in Fig. 117. From the path of the curve we see that
it is evidently a question of the superposition of two periodic proc-
esses.” We therefore form the series (4a). We could form 595 such
equations. To shorten the work of caleulation and still use as many

% .'.. .-'. ) L
» . - K hppggrt?
4 . o o
ot 5
g E S e
P T
g "- At ﬁ . _
¥ ’,-""._ LT T —
ﬂ - “' ...................
Ly ”
g LIPHE . _
S
" _ B
I N e L )
# .." o -
A o

Fia. 117

of the data as possible, 78 equatiqﬁsz'arc formet}, in which & = 10
We start out from the 1st, 8thdBth, - - function values. The first
equations would then be Ny

{13 — 10 4 22 — 25) t‘i{w —33+2—22) +&B33 -2

L)
\\”' = 3ls, — 435, + 0 =10
@ — 5+ 0 5x@1) + 5,6 — 20 + 26 — 0) + 5(20 — 26)
R0 — —Bs, } 115, —8 =0
\’x“;. ‘

™
NG

N . : i and the normal
o These equations would be taken as error equatmn: ares (250111
AN Yequations formed from these by the method of least 5q

These become
106578, — 265488, — 1830 =0
265485, — 376168, + 2541 = O
—1830s, — 25418 + 14504 = [ee].

From these we get
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8 = 3.9367496, s, = 2.8450652, [e€] = 68.151

As mean error of an equation we find from these

1/2

/
and as the mean error of 2 difference,
68.15 " _ O
ms = (7—————~6 < 24_5) =001, W
(\AH

The reciprocal equation for the determination of ’@‘t.hei'efore Decomes
o + 2.8450652° + 3.0367406u" -+ 2.543?36521& +1=4
1f we introduce y = u + 1/u bere, we‘g"efﬁ;, quadratic equation for g
¥+ 2.84596522{. {k;l.9367496 =0,

which has the two T0ts gy === 1.7108488, y, = —1.1261162 The
values of u are then calenlatéd*from the two quadratie equations

W 4 112611620 501 = 0, of 4 1.7198488u + 1 =0

and are

~

Uiz = —0.56{‘3058 :t 0.82641734; ua , = —0.8509244 = 0.5104214

From thegéwwe obtain sngles in the second or third quagirants, @
st}ch an, which are larger by & X 360° however, we 8¢ ipnme-
diately. from the figure that these angles are unimportant. Her W
?\1;9 6ply concerned with the angles in the second quadrant, namely
N\ 102 = 124°.268 108 = 149°.308
N
R o= 12°.427 g— 14°.931,
and from these we get the length of the period as 28.97 or 2411 days
_To determine which of the various angles is important, 17 60
tions are set up for b = 7, starting out from the lst, 35th, Toth,
function values. From these 17 error eguations, the normal squationt

398s, — 204y, — 656 = 0 -

—85435s, + 6565, + 10399
are calculated, from which we find

1

fee}
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& = 1.960557, s, = 0.422705, [ec] = 20.7.

As the mean value of an equation, we obtain

1/2
m = (g%gz) = 1.175,

and ag the mean error of a difference, m, = 0.526. From the Teciproeal
equation we get the values

N\
%y, = 0.039329 -+ 0.999222;; g,y = —0.250726 = 0.9680582:
2 A\
For the minimum values, we get ’\ e/

Ta = B7°.746; 78 = 104°.5654. .\
Therefore, in sufficient agreement with the values for'?;i:= 10, we have
a=12°53; 8 = 14294,

while all the other values are different. A.d\eﬁarmihation of the co-
efficients A and B is of no furiher int,erqqt'\here.

NoTES ()"

1. Willers, Numaerische Infegration (Berling }?2%), pp. 79-82; Runge-Konig, Numer-
isches Rechmen (Berlin, 1924), pp. 246-8. 0N _

2. The Caleulus of Observations, 2nd @(12‘(19‘26), p. 349. References ate also given
on p. 360 f. See also Enzyklopddie d. migth. Wiss. I, A, Oa. Burkhardt, Prigonometrische
Interpalation. N

3. Cf. Naturwissenschaflen li QQQS), pp. 637-8.
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CEAPTER SIX

APPROXIMATE INTEGRATION OF ORDINARY
' DIFFERENTIAL EQUATIONS

31. Graphical Methods. O
1. With a differential equation of first order, , '\‘ \
"\
(1) ¥ = =, 9, >

N,

where f(z, ) may be a single valued funetion of z and v, a slope is assignel
to each point of a certain region of the zy plane.”H the equation should
be integrated, this means that we would seek aurves ¥ = w(x) which have
at each point the prescribed slope. These)curves are known as infegral
curves of the equation (1). From the oit&initely many integral eurves, we
can pick out a certain partieular soluti\m of the differential equation, per-
haps from the condition that theiipﬁegl-al curve should pass through the
point with coordinates x, , y, .+ the function f(z, y) is continuous in the
region in question, then thevdptegral curves are differentiable throughout
;he entire region. The diffgréntial equation can also be given in implieft
orm: N

@ L Pe oy =0

%

If we should ga}g} out the integration graphically, then we must provide
5 many poitts as possible with the slope assigned to them by the differ-
ential equation. We mark these slopes, or tangents, by short lines, and
then draw-in eurves which have these preseribed slopes. It is to be observed
that this problem is completely indcpendent of the analytic formuls-
tioth"The slopes assigned at the various points can just as well be given
+b¥ observations as through calculation from a funetion. The drawing of

“\“the curves which have at each place the prescribed slope always corre

sponds’to the integration of a differential equation of first order. In order
to avoid an uynnecessarily large number of such tangent lines (whi

would endanger the clarity of the drawing), we combine certain glopes of
the slopes of certain lines. This makes no difficulties for analytical func-

Eons, and is also useful in the case of fields of tangents, given by oberva-
ions.

) Zi.We 1’_‘-011110{.‘,13 the points of the same slope by curves, the so-called
:e;;ic ines. In this way we carry out an interpolation, since we arrangt
all points through which the isocline passes according to the tangent

364
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belonging to it, even those for which we have not made the caleulation or
the observation. If we have determined the slope at points which are not
too far apart, we shall in general be able to assume a linear change of slope

of the connecting line. Of course, for empirieal functions, such as wind
directions, this is often valid only for mean values in the immediate neigh-
horhood.

The method of isoclines is also useful for functions given analyticallyd™\
But we will then only use it if we have to draw a large number of integral
eurves, or if the isoclines are eurves which can be easily constructed./Tt
is simplest to assign a number o each isocline, and assign to it ay q’iope a
iime of & pencil of rays which has the same nuraber. The given, data then
consist of & family of curves and a pencil of lines. These arg ‘pa,lred with
one another according to the assigned numbers. This ak{mgement can

T, 118

¢ the peneil of
also he made jn the following way: we intersect each ray of the per

 we cub the
fines with the corresponding curve, as is don¢ in Fig. $18, O
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peneil of rays with a conveniently placed pair of coordinate axes, Wa then
draw parallels to the z axis through the intersection point of each ny
with the y axis up to the intersection with the corresponding isocling,
The connecting line of these points is called the déreciriz by d'Ocagne.

If the differential equation is given in the form

F(:C, ¥, y,) =90, ~
then the isocline to which is assigned the slope « has the equation
- AN
Flz,y, @) = 0. AN

The directrix connects all points for which & = g5t therefore has the
equation
A

(3) Fl, g, 9) =050

We form the integral curves from piedes’ of straight lines whose inter-
section we place between two succesg'ifé Asoclines. We draw & continuous
curve in this train of straight lines,‘which has the prescribed slope at the
intersections with the isoclines. Nattrally these curves give only a rather
rough approximation, but thej ean be drawn very quickly, and can be
improved by a process to be'deseribed in Art. 33"

3. Ezample: The Newton equation
(3a) ,imx\ my = —mg sin 8 — W(y)

holds for j;k}e\motion of a body on which the attractive foree my of
the eartH.and the air resistance W (which is a funetion of the velocity
v) arg.gicting. Hers ¢ is the angle the tangent to the path makes with
the Berizontal. Now the line element of the path is ds = pdd, wher¢
\;Ii@e radius of curvature, and since v = ds/df, we have pdf = k.
or the eentrifugal acceleration, we have —ygcos 8 = v*/p = t* dé/d =

#
|

3 \ " vdb/ds. If we express v as a function of § and @ as a function of {1

SN
”~

i’-ll;e equation of motion, then, using the relations given above, We
ve

dv de )
ma—e'aﬁ-mgsmﬂ=—2—n%gma+mgsinﬂ
(3b)
- _mgdwcos )
v de = -0
ie,
(3¢) _ ﬂvcosﬂ)=+u-W(v)

dé mg
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To be able to handle this equation more conveniently, graphically or
mumerieally, we introduce the new variables®

u=lInwy z=lntg(£+-g), ie., tanh z = sin 8;

PR S
v cos 8

If we express the weight of the projectile in kg, G = myg, then th
N . . . € N\
equation of the projectile motion becomes w\

'\
du _ W _ W), A
dz—tanhz-{- ng = tanh 2z - G’.j.? \
\.
The air resistance is "‘\
i O
W = 1.22 Ky ’x;\\'
L&

where R is the radius of the projectile jn\eim., ¢ is a form factor for
which we substitute 1, & is the density ‘ef the air which, for not too
high altitudes, is equal-to 1.22, v ig.’ﬂle projectile velocity in nc:{s.eel,l
and K is a quantity independent 9F v, which we obtain from tables.

TFor example, if we take B = Semty, G = 12.21 kg, then R'rdi/1.22G =
6.4, Therefore we have

P4\

AN
du _ (\/ & = tanb Flu).
dz_:m@w,-ﬁ.me z + Flu)

In Fig. 118, Q”éc“a:le for tanh z is laid along the 2 axis, and a scale
first for v and then for F(z) is laid along the u axis. From tht?se two
seales We-g y construct the corresponding isoclines, to wl:::h a.rf;
drawn thetangent lines having the satne number. The interse l:ﬁ]_ln o
the exténded lines from the pencil with the c(')rrespond.u}g iso :;
i:eonnected by a dotted curve. If we ate only interested in 1;]t:.‘he fpathe

~of the projectile, then we will not draw in the_ entire path o ;
\isoclines, but only that short part of them wigu:,h_ is necessary 1())r
the construction. If, for example, we take the initial velo;lgi to :
v, = 500 m/sec., the initial angle as g = 20°, then ua = 6. 1 : }:nb
0.3564. The integral curve then is drawn ou.t fl:om this ;_)011]}i ol : g
the use of isoclines. The path of the projectile is drawn in Fig. 115
In this we have

x g id &i
z = [ & ao (dashed Jime), ¥ = — J, % 18 0 do Geolid Tixe)
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368
]
b= 48 4ot dash line).
e, § cOs @
These integrations are carried out graphically in the drawing, sod
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#

’.f\ the numbered curve is constructed at the lower left by teking b

NS

AN values z, y, ¢ belonging to an appropriately chosen 8. This cur¥

represents the path of the projectile. The numbers give the time afte
the firing at which the particulsr point of the path is reached.

4. Another possible way of collecting the siopes is the following: ¥
take any curve K in the tangent field and extend the tangents assigne
to the individual points of this eurve. These straight lines cover & ¢uT’
8, which is known as the ray curve. If we draw a ray curve for each curt
used, then we need only draw the tangents to the assigned ray cun
from any point of the first curve, to get the slope preseribed at this poil
Naturally we choose as the initial curve only those curves which 8
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easy to draw, and we apply the method only to such equations which
lead to ray curves which are easily drawn.*

The simplest: method is to join the slopes of the lines y = mz 4+ n. To
find the equation of the ray curve belonging to such a straight line, we

O.' ?
.»"\\'

Fia. 120

starh out from the differentia} equation (1), ¥' =z, ). If we denote
the running coordinates of the line determine ’b}'a t-a:(‘lgcr%t element of
the point «, y by &, », then the equation of this) raight line is

@ n =y = flo, V)& = )

The equation of the tangent line he?qhging to a neighboring point with
the coordinates x + Ax, y + Ay hecomes

q—y—*A'ymf(x+\"§x,y+A‘y)( ‘53_‘5?)

(4a) =&QQ+meM+ﬂ@wMM*@
...:,,.‘ _ f(x,y)_m + .

PN\Y;

9. : . i the two
By considerati6mnof equation {4), we get, for the intersection of the
lines, )"

(5 *gﬁ\y = & — 2)(f.(x pox + L& Way) — flz, yae + -

N . : — mz + n, then
Sirice)the points:in question should lie on the line ¥ .

\5?;‘= mAz; therefore, upon division by Az, we got
®  —m= fuy) + mf G~ @ g+ s

owers of Az, If we let

where the omitted terms contain Az and higher p envelope. From (6) it

Az approach zero, then £ becomes a point of the

then follows that
_jewemm
(7} t== + f:(g;’ y) -+ mfy(xr y)
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and if we substitute this in (4), we get for the ordinates belonging to the
abscissa £ of the point of the ray curve

_ f(xs y)(j(xr y) - m)
®) 1 =YY F ) + miE 9

We substitute y — mx + n in this equation, getting = as & parameter.
If we want to have the equation of the ray eurve in closed form, then we
must eliminate z from (7) and (8). The construetion becomes especially
simple if the ray curve contracts into a point, the ray poini: This is the
case if £ and ¢ are independent of x and ¥ individualilyy but/are funetions
of (y — ma). If the equation (1} has the form L

N
< 3

f=y_£(y_m)42'

@ | Y = o —hy ~ ma:)'~‘$ﬁ
then .
O
f—m _ Z—mN NKY
o e e T s At A
10 N\
- Z»" N
%=—Nl§j= —Z = —y + g(y — ma).

In fact, £ and 5 are t.hergjdnlbr dependent on y — mx = n. Therefore & 147
point belongs to each-straight line.

If we choose pagallels to the y axis as the straight lines, then & = 0,
and we get rax@iﬁt aceording to (9), if the equation has the form

(10a) “ ¥ = ¥y — hgga:;
x — hiz)

..’\ 3

This js.alinear differential equation of first order ¥’ = A(z)y + Bl

hete’
‘&\‘.

N 1

0D A@) = ——p B@) = - ;%(%}@ = —gla)-A(2).
From (7}, (8), and {10}, it then foliows® that
(10¢) §—z=—1/A(x), 7 = —B(z)/A{z).

ﬁaﬁfﬁn ;f A(:g} is a constant, then the ray point is always st the
ce iTom the corresponding y-parallel. O the i ators of
Pascal (35.8) is based on this pri::u;ipfe:fJr pase ne of ety

. ?n gje;eould also join the slopes on arbitrarily chosen curves ¢(z, %) =
s. Py case, we would get Ay = —gp.Az/p, + a{az)® + --- . MW
ubstitute this in (5), then the equation of the ray curve becomes
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; _ ¥ - Qgﬂo(x; EJ)
(112) ¥ = 2 ez, p)

as can easily be confirmed by caleulation. We can set up types of equations
for which the joining of the slope on certain eurves gives ray points.'
The application of ray curves is then useful only if these eurves are easy
to construct, or if simple tangent construction can be carried out withaut
drawing the curve, as is the case for conic sections, for example, '™\,

6, Example: The polyphase mercury vapor rectifier{works so that
during one time interval only one anode de]ivers'cilr}ent. Then this
anode delivers current in conjunction with thesnext one, then the
next anode alone delivers current, etc. Theféfore periods of single
anode operation alternate with transitiqn\p}riods. For the single
operation period, the current densiti\W/ is determined from the

equation 2
q :2\\,
o sin wi — K,

Ry g
- L, ‘I‘l" I 3

(I J =

and for the transition periqﬂ’lfrom

(II) = — % I :1:~En SiIl wi + Eo Siﬂ{wt - ?) - 2Eg,
where R, and L{or Rx and Lk are the resistance and inductance of
the anode oy @\f the direct current network respectively, and whert

o\
R, =R, WEx; L= L.+ Lg; Ry = R+ 2Rg; Lo = Lo + 2Ux.

'E, angd¢/are the maximum potential and the angular frequency of

the gltérnating current, ¢ is the phase angle difference of two sue

\l‘f’s.f"e currents, and E, is the sum of the potentisl drop e in the

. ‘\b etifier and the counter e.m.f. Ex of the network. Both of these may
«\ N be regarded as constant.

) The end &, of the singlé anode period is determined by the condition

\‘:

LJ’ 4+ R J = E,sin wt — E, sin{lwf — @)
(111
= — —¥lein?
28, cos(mt 2) sin &,
and the end of the transition period by
(1v) § = _I_fi_nj__Eusinwt—Eqsin(wt—qo)'
er L‘, ’
where the curve for j is to be constructed from the point with ihe




°
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abscisea ty , 1.e., the time at which the single operation ends, and with
the ordinate — J, which is therefore equal and opposite to the ordinate
of the current curve at this point, up to the intersection with the I
curve. There the time ia 4, for the end of the transition period, and
the eycle begins again. The value J, of the current at the time
must, for steady operation, be equal to the initial value J, at the
beginning of the single operation period. To get this, we stari out
from an -arbitrary value Jo , construct the curve for J and take the\
final value J, as the new initial value J; , etc., until we can no longer
distinguish the initial and final values from each other, wii;hih.ft:he
acturacy of the drawing. O

All the equations (I), (II), (IV) are linear differential equations of
Girst order with constant coefficients A(z). Therefore the method
described in the preceding section is suitable. A rhy-point is then
assigned to each y-parallel, and we obtain \/

_— __L_i_. __EnSiIlmt—'?\f
(Is) E=t+%s ,?______._H 2

=___’_._____.-———‘——‘——"_"'_‘

o, L. B, sinut - Bosin(wt — ¢) — 2B,
M) g=t+ g = Hanins :

ad

g SLNE ¥, o —=

L, S ’Eo’sin(wt — ) — sin ]
(IVe) E=t+3%5 a&F it : )
The ray points for gach }quation then are at the same distances from
the corresponding fparallels, and the curves drawn through the ray
points are sine ciryes. . ‘

The following should be observed with regard to the units of
measuremg{xt,:’ if the units are given by the lengths

13@:\:—" rem., lamp =icm., 1 volt — & cm., 1 ohm, = p Chl,
O\ :

1 henry = A €.,

.

v“-_!?.

3 -_—
p =3 A=

i ily.
Therefore only three units of meagurement can e chose;—l az:(;h::zta{g;'
Tn Fig. 121, the construction s carried out for a three b
In this case

5 = Bl E, = 15v;
o= 2x/3; B, = 150V R, =0; Bx=5%
L, = 003h; L= = 0.03h,
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The frequency is to be taken as ¢ = 60/sec. Then
R1 e 50; Rg = 109; L)_ = 0-06h; Lg = 0.{]9]].

We take 9 cm. as the scale modulus for the half period (Fig. 1214
reduced to half this value), i.e.,

.1 1 1
T = 1080cm,z=Zcm,e=Eﬁcm,thenp=5m,7\='2\lﬁcm.

If we denote the length in centimeters by primes, we ha\{e
{

Ef = 7.5 em: B, = 0.75 em; Bx = 1 em; L] = Ig's 6.48 cm;

B{ =1 cm; R — 2 em; L{ = 12,96 om; I} = 104 .
£ &
The ray points are determined by "‘\
(D ¢ —¢=12960m, 7 = 768n(120s - 015);

D ¢ — ¢ = 972em, o= 3.7 sin(lZOxt -~ %) - 0.75;

®d
<N i

(IV) E’_f-'=m, : ; )}'=m;

_i'__Ls.:‘m os( r) OE‘( 'r)
Ef—tfj@.ﬁ(g) e wﬂ—g =2¢ 120111—5.

8. J

In case (I'){therefore, we have no ray points, but a pencil of Jines.
We drawnthe y-parallel at a distance of 0.5 cm., and then the ray
point (Ij\Mdotted curve with open circles). Then we draw $he integral
curve from zero out and construet L,J’ graphically, to determioe for
W{;’iﬁh value of { this is equal to the ordinate of the curve —12%8
‘\cp {wt ~ =/3) drawn on the upper right, under (II1), for the values
R\ 3 to 17_. If this is the case for the abscissa {, , then this is the endpoin
AN of the single operation period, marked by an open circle. From here
~\J on the integral curve is drawn by use of the ray point (IT). Simul-
\/ taneously, the integral curve of the equation (IV) is drawn from the
point A with the coordinates £, , —J, by use of the pencil of lines
(IV). Both intersect in a point 4 with abseissa ; . This is the end:
point of the transition period. This point is shifted 1080/3X60=6 o
:910 the left, to A’ If 4’ were to lie on the integral curve, then the
desired current would then be found for the steady state. Sinee this
E:ﬁ:‘:hﬁ case, We carry out the construction of A’ again and repest
il the resultant point lies on the curve. After a second repetition,

C coincides with B within the limits of accuracy of the drawing.
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For & check, the construction is carried through again from a point
¢*, which is higher up on the drawing. Here also we get coincidence
after & second repetition. In addifion to the potential curve E, , the
anode potential & is also plotted in the upper left portion, as a dotted
line. This is caleulated from the construeted current curve by the
equation

E. — L,J' — RJ = @, for the single operation period;

1/2(E, + E.., — LJ' — R, J) = @, for the transition periouil.
2 AN
NOTES A

1. Details on the integral curves can be found in Willers, Graphische Indégration
(Berlin, 1820}, Art. 12 and Art. 13, RO

2, Cranz end Rothe, Ar2, Monatshefte (1917), p. 197. AD

8. Crans, Lehrbuch der Ballistik T (Berlin, 1925), p. 61. S

4, Mehmke, Leiffoden 2um graphischen Rechnen (Leipzig, 1917), e 119.

5. Czuber, Z. f. Math. u. Phys. 44 (1899}, p. 41. \

8. A corresponding treatment for polar coordinates is foupd"i}Neuendorf, Z. f. angew.
Meth, w. Mech. 2 (1922}, p. 131. - N

7. Willers, Arch. f. Math. u. Phye. 111, 26 (1918}, p,'e6) and IIT, 27 {1918}, p. 51,

8, Pflieger-Haertel, Wissenschaftliche Verdffentlichurigen aus dem Siemens Konzern,
1T {1928), p. 61. N

N

Q.

»s

3z, NumeriqélQMethods.

1. In numerical integration, thé problem is to calculfmz_ additional 'pos'nts
of the integral curve, starting f"{‘m}a point Zo , Yo 0of © partzcular_ solution. In
order to find another poinfisve rust caleulate the change k which y under-
goes if we change = by hoWe'use the Taylor geries for this ealeulation:-

s B L
(1} Euh o gy g U
where, if we{tﬁl‘ﬁ from the equation ¥’ = f(z, %),
R [CAE A
(18) &9

O W= L, w) S W) S
¥c/We soon obtain very complicated expression. To Wr’l’[-(?.t lihe o
in simple fashion, we introduce & symbolic representation, using

ealled cperatom, and set
Dl[?} = + feev,
(1b} d 2
D!(i’] = (p. + flp,)? = @x T 2fe-y + f LT
ete. In order to be able to perform simple calcula.ticms_x with Fhezej- 53
we need the following three rules, which may be eagily derived:

perators,



376 PRACTICAL ANALYSIS
D' + ¥) = D'(e) + D',
(le) D'e-¥) oD'(¥) + ¥D'(p),

D) = D"'(e) + =D'(N)D" e,
By use of these cperators, the derivatives entering into the Taylor series
may be written (if we omit the arguments): ~
O\

v =1,
y = D', O

o
N

I

v = D + 1.0, ,\:\f
@ 3 = D) + 2DNOD() + LD D) + DD,

AN\
D) + LD + £:DIGI 3D'0)- DU,
y” = D'U) + LD + WD) + L) + 4D,
+ 6DYADN) + TAD'OD') + 8LuD'O)"

These expressions are'to he substituted in the series (1). If we continte
the series far enough)we can calculate k from it with sufficient accuracy,
provided that jshe,\series converges rapidly. But the cslewiation will, in
most cases, he'\e¥tremely involved, because the number of terms of the
individual differential quotients incréases greatly with increasing order. In

R4 this way it happens that for 2 function

154 \ flx, ) given in tables, the caleulation

of the higher derivatives betomes in-
accurate.

2. Therefore, we must follow anotber
method; in this, assuming satisfactory
convergence of the series (1), We call
that expression the best approzimsls
solution which gives, exzactly, as Wiy
terms of this series as possible, beginning
with the first term. In many cases, 888

Fre. 122 first, rather rough approximation, ¥

tangent o approximate the curve by use of th_e
angent segments, i.c., if we sturt out from the point z, , ¥ , we first set by =

J(xo 5 yadhe . A second point is determined by this, Furthermore we de-

-
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jermine the change of y, by means of the equation ki = f(@. ; 1)hs , ete.
The error ferm in this ease is proportional to h?*. The process is known as
the Cauchy difference method.” In this way we can sketeh a first approxi-
magion for the integral curve. Here we do not at first usc the slope f{z. , y1)
# the point P,(z, , ). Instead we join a segment of slope f(z, , ¥,) at
the point @, (with abseissa (xo + 2,)/2) to the line train, and continue
ihis line segment to the point P(x: , ¥-). We then cualenlate the slope
again, and join & line segment of this slope at the point @, of the polygon
which has the abeeissa (z, + 3,)/2, ete. The approximation curve betomes
«ill more aceurate if we again determine the slope flx, , 7)) at the peinb
P, in which the straight line juined at @, cuts the y-parallel throughs x, "
We then join a line segment of this slope at the point @, . This 'r‘r}"eft hod is
continued until the slope no longer changes. 2\

We can get about the sume accuracy numerically, as \}'g'snbtaiued in
the graphical methods deseribed above, with a method glven by Duffing.?
For an integration formula, he uses O

K7
k=w — ¥y = %[4}‘(:0 , Yo) + R (f(zog "Eb)j + 2f{xy )]

This is an equation in which y, enters as the linknown. We can t-hefrcfore
caleviate the ordinate value y, of the, itegral curve, corresponding to
the abscissa value 3, = Zo + h by a gohation of the equation for ¢ . This
method requires & great deal of calchlation, since the equation for 3 will,
in general, be solvable only b¥ a,pproximation methods. It.‘ShO\lld be
added that we have to form{'zhg first derivative of the funetion I, ¥)-
To estimate the approximation, we can develop the last function i the
brackets and get, O

(= b 4 X DO D + 1.7

.\" 4 1 L cea
O (g 1.00) + DY) +IPOPEAT
Theétil?ition therefore agrees with the exact value (1} up tod(a;;nd(;}g?:;ﬁ)l
the_term with A® as factor. This method can be E?{t-eﬂie ¢ ﬁowing way.
equations of second order. This 15 used by Funk® in t ‘f? Ot.he hncissas
He starts out from the function values and derlvatgfas (::‘ o v of
Zy and x, -+ h, and caleulates them for xu + 2k. In this WaY

sixth order will be given correctly.

jer {o ealeu-

3. The formulas as were first given by Runge' are ml;zhtisze;mulas v

late. These formulas, which have the same accurafyh t the Torm  eeent
Duffing, have been so improved by Heuwn® and Kutla” that ¥
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with 4 function values even the terms which contain ‘ as a factor. The
chief advantage of these formulas is that they are obtained with the
function values alone, so that we avoid, for the most part, the detailed
calenlation of the derivatives, The formulas represent a generalization to
differentisl equations of the mean value methods deseribed in Art. 16.
We geek to represent the increment % which is added to the ordinate y,
of the integral curve when the abscissa z, changes by A, as the mean vslue
of the individual function values 7(z, ) lying in the okserved in-
terval. We therefore write O\

k= T AfE™, ™) = T AE70

Here the ordinate difference 3™ — y, is denoted Iay(k"”.’, and, for example,
with the use of four function values, this will be\chne

k= flao, yobk,
ko= f(z, + ok, o + a*@}»\,'
K = fay + Bh, yo B+ 87K,

KO = [l + Y@ + ¥R + 1R A AR
where the A and the o/, 8% 8" --- are constants still to be chosen. The
requirement that thempproximation of the terms up to those multiplied
by k* should agree.with the development (1) gives 8 condition equations.
‘We have 10 coni" 5 at our disposal for the fulfillment of these equatioss.
There are only 10 constants because the conditions « = o, § = ' + §,
v = + ¥A3 ¥ must be satisfied. Therefore we have & dpubly infiniz
manifold ofsolutions for the use of four function values.
I

@ﬂe of these, given By Kutta, is quite important. Because of ifs

symimetrie construction, it is easily set up, and because of its smal co-

wefficients, it is especially useful for calculation. We have

E = f(zo , 40k,

. p =50 + k)
ko= f(a:., + Ehr %o + %k')'h!
(3) . q= }2_ (kn _|__ k!u)
k= f(xu + § hs Yo -+ %k”)'h,
' 1
k=3 @+ 2.
EY = f(zo + h, yo + K7’} b, 3

If y does not appear on the right side of the differential equation, we then
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bave a gimple quadrature, and this formula goes over into BSimpson’s
rle. In this case then, the terms with the factor h* are still represented
exactly, To prove that this also holds in general, and to determine the

devigtion of the term with the factor A°, we develop the above equations
in series:

N
¥ o=rk : A
A\
B o R+ DO DDy N\
¥ =1h+ DN+ DD pr 384 O
l“."
hd K n 4 _h_ﬁ..' .~.“:\ ¢
km=j.h+1)‘(_f)%+D°(f)'§+ DSU)1—8+DU)384'\§,"
NN
N/

» B K.
+ f,Dl(f)}_;' + £.D I@i\\i*mm a6
R
+ DD g + DUDD
¢ vz B
N + f D] 35

. »
{\ + DIU}DSUJ 'gﬁ
(\J
(3w LA . .
\ » ) Frath) L
;,w=j-h+D‘.(,f)gz}+D’(f)'§+DaU)E+ 2
N\ "
IS IOLE A FHID0E
N .
N\ + o g + GO
Ao

\"’> o/

hs
+ 2/ DN TN 18

b+ DDy + DD

-+ 2D'({) ‘f!Dl(f’)
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+ LDONE

1 B
+ D U)D?Ul] “I-
From these we got A~

E=f-h+ D %— + D) + f,,Dl(_m% O\
7'\ “

LD + D) + FiD LD EID
0

+ [g DN + %LD“U) + gfzm) * %LD‘U)D’U«)
Y,
()

15 ., oo 15 bt 25 ey |
+ 5 DU + Sl DU S22 DD (f,)] o
Therefore these terms agree “fiﬂr those given in (2) up to those with the
factor A, while the differendedof the factors of &® gives the error of the
approximation formula. 3%

5. It is not possilileto bring terms of fifth order into agreement with
four function valuesyfince 16 condition equations would have to be satisfied
in this case. "Bhis'is not possible with five function values either, since then
only 15 copgtalits are available.® Kutta gives formulas which do bring
the facta\6f A" into agreement, using six function values. However, we
can brifig“some of the terms of fifth order into agrecment using four
furﬁt;libﬁ'v&lues. For example, Runge® gives a formula in which the terms
which do not contain £, agree in the factor of A® ag well as that of * Such

Jayformula then gives a better approximation if f{z, ) changes only slightly
O with g, if then f, is small. However, this formula is not so convenient for
\ 3 7 ealeulation as those given above.

It the function f{(z, ¥} becomes large in the course of the caloulation,
we shall get more sccurate results if we exchange the variables. That s,
instead of the equation dy/dx = f(z, ), we use the eguation da/dy =
1/f(z, ¥). We carry out this exchange, which we can make for each st

:}i the caleulation, whenever the absolute value of f(z, y) is much luger
an 1.

6. it'he calculations here must naturally be done schematicaily, and the
following scheme is appropriate:
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| | l |
z ¥ | flz, o fz, y)l " Yn
- i
| | v
In Yo ‘ f(fl?r) ) yn) | Iy || E |

h A i it |
%+ 5| ¥ + o \ f(xo + é, #o + 2—) | k' I bt \

h }_C’_i | . ( hl k”) i e i rrs i ~\
1+ 2 Yo + 3 l Fe=w + 5 Yo + 2 | k l 2k | .
tth | o+ l| T hyya Y| EY | RS 2

l l| %.."ﬁk}" \ Y1
KA
ol ¥ \ flo, y0) ]] BN \} k i

h k’ l h k, P r ‘

31+§ o +E | f(x'l + §! I3 + 2) ‘xt.\\'is 2k 1

In the scheme, calculations are carri’ed’,,oﬁt in horizontal rows, and the
value of k™ ealeulated each time jswiséd in tho next row.

To have a measure for the accuracy of the ealeulated values, we do not
caleulage the difference of the factors of i given in (2} and (4), since the
work of caleulation would he t00 great. It is mmch easicr to carry out the
same ealculation once 8 éﬁﬁ with the doubled interval 2. In tu]lff first
case, lat y have the inerements k, and k. suceessively, in the second 13]16 incre-
ment &. If the error{o$ increment in the first casc is A, = AR™, then it
becomes A, = A(‘;’H)""“ in the accond case, if we neglect the terms with
higher Pﬂwer‘q'&iﬁ‘ We now have the identity
O mega B thth)

o2 -1 2" — 1

e u".;fn’then say: the error after a double increment of his abf)ut‘[i}{ (.2" e '1)
§the difference of the two results, j.e., sbout 1/16 of this i 31 engeﬂllﬂ
this case. This allows an appmximate estimate of the magnitude 0 &

I
arrer, which is, in general, compiletely adequate.

7, Exzample: We again use the projectile. problen, alreadg;_ :f:n-
sidered graphieaily in 31.3. The problem is to integrate the equatl

du tanh z - g aKe™ = tanh z A+ Flu).
dz
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In the case considered in Fig. 118, tanh 2z + 6.4ke™ is larger than 1.
We therefore begin with the equation

dz _ 1
du  tanh z + Flw)

with the initial values u, = 6.2146, 2, = 0.3564. A column is fnserted

after « for » = ¢* This is needed for the determination of F{u). For
the increment of u, we take Au = —0.25. N\
u v z tanh z | () | flwe) | A/ u,2) L

6.21461 500 | 0.3564 | 0.3420 | 6.397 | 6.739 | —0.03716{ —~0.03710 0.3564
6.0806 | 421.2 | 0.3378 | 0.3255 ;| 4.943 | 5.269 | —0.04745\—0.00490
6.0806 | 441.2 | 0.3327 | 0.3209 | 4.943 | 5.269 | —0,04748 | “—0.05498
5.0646 1 380.4 | 0.3089 ; 0.2004 | 3.676 | 3.075 | —0.06289 | —0.06289 { --0.04831

—~0.28960 | 40.2081

5.9646| 3890.4 | 0.3081 | 0.2087 | 3.676 iQ‘?\5 —0.06289 | —0.06289
5.8306 | 343.6 | 0.2767 | 0.2699 | 2.235{] 2.500 | —-0.09064 | —0.19928
5.8306 | 343.6 | 0.2583 | 0.2527 | 2.280)["2.402 | —0.10032 | —0.20064
5.7146 | 303.3 [ 0.2078 | 0.2040 | .0:843 | 1.148 | —0.21775] —0.21775 | —0.1134

&Y 063086 | 0.1047
From here on, f(u,) i smaller than 1, so that we now return to the
original equationi We take Az = —0.1 as the interval width. The
scheme the ]:Qco‘mes
z 2N v |tanhz| Flu) | flwa) [ hftuwz) [k}

0.1047N5:7146 | 303.3 | 0.1923 | 0.9432 | 1.1355 |--0.11355 [ —0.11355] 57146
0.14474-5.6578 | 286.5 | 0.1437 | 0.7397 | 0.8834 [ —0,08834 -0.17668 :

(4447 5.6704 | 290.2 | 0.1437 | 0.7767 ; 0.9204 | —0.00204 | —0.18408
'\\0\3947 5.6226 | 276.6 | 0.0942 | 0.6576 | 0,7518 |~-0.07518 | —0.07518 | —0.0916

A\ . |~0.54049] 56230

ete. We get
z ] 0.0047 |_0_0953] —0.1053| —0.2053 | —0.3053 | —0.4053 | —0.5063

u | 5‘6230| 5.5589| 5.5130| 5.4816 | 5.4624| 54587] 54589

The_ numbt_ars are given here up to the point that the velocity again
begins to increase, because of the descent of the projectile. These
calculated points are plotted in Fig. 118 by small circles. These
naturally (_ieviate somewhst from the curve obtained graphieally. To
get some idea of the accuracy, we carry out the first part of the
calculation with the doubled interval width:
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% » s tanh z | Fu) | flu,z) | hifuu %]

8.2146| 500 | 0.3564 | 0.3420] 6.397 | 8.739 | —0.0742 | —0.0742 0.3564
50046 | 389.4 | 0.3103 | 0.3080 | 3.67v6 | 3.985 § —0.1265| —0.2510
596461 380.4 | 0.2037 | 0.2865 | 3.676 | 3.062 | —0.1262 | —0.2524
5.7146 | 203.3 | 0.2302 | 0.2262 | 0.0432 | 1.1694 | —0.4276 | —0.4276 ) —0.1675

—1.0052 0.1889

The error of the value of z at the end of the second interval will t.here-\
fore amount to about four units of the last decimal place, i.e., ahout
2%, o .

8. A very useful method, which is based on the use of the dpprozimation
formulos for integrals derived in the difference calczdatiagaﬁqf Art. 12, bas
been developed by Adams.'’ In this method we use fHe \Newton formuia
for the difference of the terms on the increasing dia\gqnal [12{1)]:

" 5 L 3
L. f{z) dz = ﬂ-[yn -+ % A:u: + ‘1_2 A%l.\ﬁ""s' Ais“
®) + % ALz +"%’58 Ao

19087 0 | 5257 41 ] + Rur s

+ pazeo 2~ T 17280
where, for —nh £ 7 5 +oht}!;1d continugus functions, f (-m(t_)’

) R,....:;~= k'“f("”(‘f) j: (i :l':‘rli) dt,

O ) 4
by 12(3). If the giv\en equation is i = f(#; y) 'a.nd if the 'gz-a.l:estoi g;c?;;a
BODSequentlth}éé of i are known for a series of equl lhﬂean Pt
values z, a\:9:‘{ + nh, then we can build up 2 difference scheme

knowm‘v,al}es of y:
e ) ¥ 1
0“\‘} » Alf‘s .
\ i Ay .
Bisa Barz
2
Y B2 ?
(6s) A Ay T
¥ = h
A#}s .
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Q(yi'y‘ﬂ} + syrry(-\) + 6(3}”’]2 _ 4yrn . xy“] =0

2?}!?)“\] + loyf)y(?ﬂ + 20y;;;y{4) _ 5yt4] + xytf-] — 0
2y:y(7} _+_ 12yny(ﬂi + 30y”1y'.5) + m(y[-ﬂ)? - By{-’tl — xy(ﬁ) =9 '"\
1o (8 I 212,101 141,05 (6 7 N\ ¢
ory™ 4 1dy"'y™ 4 42y S+ Ty — TP — ay ™ = 0N

7NN ©
If we take as the initial value x = 1, ¥ = 2, then, according govéhe
sign which we give the root, this becomes ' = -1 or y =1

we calculate the higher derivatives for these values from the dbove
equations, then we get, for example, for the negative va]n?xc}{ the root,

_— l E l 3___3,_ 4 i 5,_'E_ ]
y=2—h— 3K+ k ak +'B.4\" ik
{8¢) ‘...\‘.'
153 .. 28697,
+ 792 " ;.23672"

We take b = 0.02 as the 'mter‘{a}.:ﬁ;i&t.h. The error in one interval
then becomes, by (6), C\

Ny

' . NG 4 )t + D 4+ 1)t
IR '| = hﬂ 1 f[-'](’rg“‘]g; M,i.—)é-!-—-—-—'—dt,

) N\

il we agam\a’;sidcl- the four differences. For b = 0, f "5’ (n < 10
and t ei;}{gcmams, as we can obtain from the above scries. Then
SO 950 .
a ~ 2 < 211.107%
'.@a) | R = 3¢ .02 <
W

. N ) .

\ g Therefore, we will be able to carry the calculations to about 8 dimmal

places. From the ahove series, we first ca,lcu‘ljs:,te the vah;oﬂtiue vc:ﬂ g:: c‘;

then, by means of the equation g’ = (¥ — 1) we cu_rr;lp?demmmn o8

¥ to yi from these. These values are cntered in Lb.e.: ; lth di&eﬂ;me

the fourth column are the values hy', from which. he e

scherne is then formed. The calculation is carrx.ed out wit es:educ;e:ud "
logarithms. The irregularities in the fourth difference 8T

rounding cfl errors.
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= y v h-y al A | AT
100 |2 -1 —0.02000000
—10046
1.02 | 1.07980199 | —1.0087028 | —0.02010406 +1166
— 18240 —~33
Lot | 1.05981577 | —1.0188230 | —0.02037646 +1133 5
—17107 —28 [
1.06 | 1.03015284 | —1.0273763 | —0.020564753 41106 ]
—160602 ~28
1.08 | 1.91852440 | —1.0353774 ] —0.02070755 +1077 +2
— 14925 \) -6
1.10 | 1.80774135 | —1.0428401 | —0.02085680 -1-{10?;1 +2
—13874 | -2 1
1.12 { 1.87681430 | —1.0497771 | —0.02099554 o 11027 +3
— 12847 [} -2
1.14 | 1.85575368 | —1.0562004 | —0.02112401 ) ¢ | 41008 0
231841 -2
1.16 | 1.83456063 { —1.0621209 —002124242 ’ + 985 g
— 10856 -21
1.18 | 1.81327212 | —1.067540} —002!35998 + 964
. — 9892
1.20 | 170187088 | —1.0724048 —«002144990
1.22 | 177087546

Another poss1b1hty fm: gett.mg the initial values of the difference
scheme is the method’ ‘of iteration to be described in the following
article.

74\
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33. Method of Iteration.

1. For the usefulness of the methods described in the two preceding
articles, it is essential that, if the accuracy of the solutions found by these
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methods should not be sufficient, we can improve them graphically as
well a8 numerically, as is shown in the simplest ease in 32.3. If is also
necessary in almost all cases which are of importance for practical use,
that we can approach the aclual solution stepwisein particular tnlervals. In this
way, the degree of the approximation in graphical methods is limited only
by the aceuracy of the drawing, and in numerical methods only by the
pumber of places carried out. This approximation process has been used
by Schwarz, Picard and Lindelsf* for the proof of the existence of the '
solution, and was then applied by Runge, Cotton and others to the actial®
construction® or ealculation® of the solution. . O\
If we desire the solution of the equation , \' N

(1} y = flz, ¥ N\
which passes through the point %, , Yo , We write this seluticin. in the form

/N

® y=vot [ JG.9) dx.

. IAY .. . .
If we have any approximate solution %o, of thiefequation (1), then, if tl‘ns
is substituted in the right side of (2) and tjk}e integral is cvaluated grfmphm—
ally, according to the methods of Art, My or mumerically, aceording to

the methods of Art. 12, a new approfimate solution y is given on the
left side: ™y

(22) Yz} 7 yo + _L fle, yea) do.

X'”\ .. -
If we process with ¥ é\fcac’tly as with ¥a, 'th-h the new approximation
Y5, In the same way,,:t%., then we finally obtain an (n+ 1)st approximation
® :‘:\ ¢ Yarn = Yo T+ J‘ flz, Yow) 42

't\n Tao )
To inw g}’ée the convergence of the process, We form the difference of the
two equ}tlons (2) and (3):

*

AN ¥ = Yo = |, [, ) — £, You)] 0.

If we denote the difference between the actual sc:_lution y and the ap-
proximation Y With & = ¥ = Y then the equation

* - s (n!)
@ @ = | {1 = S22l o) do

. L 1
is obtained. Bince we are dealing with small deviations i?etvs;ezin the actua
golution and the approximate solution, we have, approximately, |
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f, ) = @ ye) O
¥ — Y dy

If we now assume that this vatue does not exceed a finite maximum 3

in the interval under consideration (the choice of the coordinate system

can always be provided), and if we further assume that | e, | is the maxi-

mum sheclute value of e(z) in this interval, then it follows from the equa-

tion (4), by use of the mean value theorem of integral calculus, thaty

(42}

(4b) ]£”+1I_£_M]€,‘E1$"’Io§. \\

Since M is a finite pumber, we can always choose the size of the integration
interval so that M |z — 2, | = x < 1. In this case thepy\

(5) ] Eqil ’| 5« E € I! ) 4 )
and for sufficiently small values of x soon differs\only very stightly from
zero. O

In practice, we first obtain an approg’rb\a.fion in a sufficiently small
interval. This approximation does not\fieed to be especially good; if we
only choose the interval, and conseqn:eﬁtly « sufficiently small, we shall,
through repeated use of the methol ‘characterized by equation (3} scon
approach the correct solution in\this small interval, provided that M is
not too large. If one approximation no longer differs from the preeeding
one, we then can assumse, that it agrees with the desired solution within
the possible accuracy:.We then proceed in a similar fashion in a neigh-
boring small interval,‘starting from the endpoint of the last approximation,
ete. In this way, w find approximations over larger intervals, even if
the process on}y: converges in a small interval. We can therefore apply
this method, @irectly to integration. In this case, we can start out from
any appreximation value. In particular, we can obtain the initial values
for therdifierence scheme in this way, if we want to use to the method
dwt\:r\\bﬁd at the end of the preceding article.

TN,
S

#\% " 2, The application of the method can best be understood by an

example. We take the example for which we caleulated a small part
of the solution in 32.9. We shail first find an approximate solution
graphically, by the method of the ray curve, improve this graphically,
and then further improve the resultant approximation by the numerical
method. We then seek the solution of the equation

(5a) v = (ay — ?

which goes through thsf point @, = I, 5, = 2, for which the roof is
t0 be taken with negative sign. A first approximation is obtained by
the Cauchy method. The determination of the slope is espeeislly
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simple here with the use of the method of ray curves explained in
Art. 31. The eurves are parabolas in this ease,

We can find a still better approximation by the methed given in
32.2. This first approximation is not drawn in Fig. 123 in the first
interval, and in the second interval (between 2z = 2 und ¢ = 2.8) it
is the dashed line.

With the construction of the first approximation by tangent seg-

’ N

e B B R

- ¢\
NS ©

NS Fia. 123

' ments we also have the corresponding slopes and can plot points of

the curve i, = flz) in suitably ch_ose.n u1_1it-s‘ We tbeanlrav; 2;
amooth curve through these points. This line is dotted in Plg. -
and runs from the lower left to the d(?tted z 8318 through ‘f(;l- e
graphical approximation in this figure s first, carried t-h.rm:hg?‘ for the
interval from 1 to 2. We now draw ;hehmtegrzl_ e;t];exto_ : byu e

3 initial point A with the coordinates . = 1, 2
-c';llivsei.st l:irt?l‘:egg;}:i;nrlnethgd of Art. 14. In this case we must so choose
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the integration base Py, that we have the same scale modulus in
the direction of the y axis with which the first approximation was
drawn. This gives the dot-dash curve 2. We take the pair of values
2, 3s, from this curve, substitute themin ' = (zy — 1)* and calculate
the values of #{s which belong to the given z. These values are also
plotted on the lower left. We draw the dot-dash curve yf;, through
them. We integrate this curve with the base .0, , get the new in-
tegral curve 3, ete. The next step gives a new infegral curveM (not
drawn) which differs only slightly from the approximiation value
previously obtained. N\ .

For the next interval, from 2 to 2.8, we draw the dashed Approxima-
tion line 1, with the curve v, , from the endpoiitf of the last ap-
proximation. We again apply the method deséribed above. We can
see that the convergence is much less rapifiin this interval, especially
on the different paths of the curves ¥4, g.nd #tsy - We have therefore
taken the interval x — x, too large, “)fith five approximations we do
aa well here as we did with four, above. The method is not taken to
the extreme limits in Fig. 123. 2\ -

In many cases, the reprg:atimtion of the first approximation is not
g3 simple as it is here. If, starting from an arbitrary approximation,
we have approximated only a small piece of the integral curve, then
we can usually depend'dh our judgment, and extrapolate the portion
from the first inter¥al, finding the first approximation for the second
interval. The gI;ea:ber the portion of the integral curve already plotted,
the greater is €he’certainty of being sble to extend this portion.

3. To apply the numerical method of stepwise approximation, we
use ong-gf.the formulas derived in Art. 12 for the numerical inte-
gration, We select the Bessel formuls most convenient for caleulation '
in theform easily derived from 12(6):

£\

N\ = = 23_‘: yh 1
\ ko = Yor2 — ¢ = h-j; y dz = h.( +2 kT Arvcsra

()

1 ., 191 .,
-+ 720 Alem — 50480 Aram )

We continue the difference scheme to the end of the interval in this
way, while we take the last calculated difference as constant.

4, Values of y are recorded in the foHowing scheme. These have
been read from the last approximation curve for equidistant values
of z. These values are denoted by y, .
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TABLE 1.
x \ Yoy l E3 1Tt ‘ y’{ 1 \ Al l Al k Yo
2 2 -1 +155 3
—1.0815 | —a30 i | —0.1027
1.898 2 0878 —1.0430 +136 1.8973
—1.0678 | —205 10 | —0.1088
1.2 1792 | 2.1504 | ~1.0725 +115 1.7985
—1.0815 | —180 10 | —0.1025
1.3 1.68¢ | 2.,1892 | —1.0005 +114 1.6860
—1.0958 | — 66 8 | —0.1047 7 28N
1.4 1.57¢ | 2.2036 | —1.007m1 +108 ANB71Y
~1.0060 | + 42 & | —0.1088] ™
1.5 1.463 | 2.1945 | —1.0020 + 87 ) 1, 4655
—1.0865 | +129 & | -0/
1.6 1.354 | 2.1664 | —1.0800 +o7 § L& 1.3582
—1.0887 | +226 7.0 N0 1004
1.7 1.248 | 2.1182 | —1.057¢ + T4 1.2488 .
—1.0425 | +300 e —0.1081
1.8 | 1.142 | 2.0858 | —1.0274 4095 1.1457
: —1.0077 | +395N\S 7 | —0.1084
1.9 1.040 | 1.97606 | —0.9879 AV 61 1.0473
—0.9651 | 1466 7 | —0.0058 |
0.044 1.8880 | —0.0423 | 39 4 95 0.9415
| —0.9148 | w4551 7 | —0.0955
0.851 | 1.7871 | —0.8872 |\ 70 0.8560
—0.55693" 4621 5 | —o.0867
0.764 | 1.8%08 | —0.8251 + 59 0.7693
=0u7911 | 4680 4 | —o0.0715
0.684 | 1.5732, J<0.7571 + 44 0.6078
N\ p.7209 | +724 s | —o.0mi2
0.612 | 1.4688 | —0.6847 + 20 0.6166
o | —0.8476 | +TH 2 | —0.0877
0.540 | /19725 | —0.6103 + 26 0.5589
P\ —0.6718 | +170 g | —p.0s21
2.6 0.404\ 1 1.2844 | —0.5333 + 44 0.4968
\d —0.45%6 | 814 g | —0.0428
27 | gd16 | 1.2082 | —0.4519 + 8 .| 0.4440
] —g.4109 | 4820 — 1 | —0.0408
2,8} "0.406 | 1.1368 | -0.3609 | — = 0.4032
\.

N\ Then the interval is A = 0.1, The numerical approximation method
may now be spplied fo the entire interval from z = 1 to & = 2.8
(which is certainly too large) in order to illustrate the operation of
the method (Table 1). Here we first caleulate zy (column 3), subtract
1, and take the square root of the remainder. This gives the values
of y},, entered in column 4. We form the difference scheme for these
values in units of the last decimal place. This is carried only to the
second difference which, because of the inaccuracy of the values read
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off from the drawing, is very irregular. We then record the inter-
mediate values (italics) and one twelfth of the intermediate values in
the eolumn A? and calculate the values ky by the Bessel formula
{next to the last column). We can obtain the next approximation
Yy with these values k; . The ., are entered in the last column. We
observe that the difference between the initial value and the values
of the second approximation becomes larger, in general, as we go
further away from the initial point; nevertheless the differences rémain
smeller than 0.6 mm. with respect to the values read off frem the
drawing. In the second approximation, one more place Js\eakried out
than in the first. We may form 2 third approximatiﬁn with these
values in the same way, and proceed similarlzy.unt-ﬂ the latest
values caleulated no longer differ from the valges ‘of the previons
approximation. In this ease we do not record: additional approxima-
tions for such values. The ealculation is‘carvied through to the fifth
decimal, since we can neglect the Lijﬁerte\qqes of fourth order.

TABLEAN

H

¥ ¥ Wie | ¥ FE ) Yex Wm Wemy #in Hiw

10 005 b b3 B2 £D 1O BE e b= e e e

{ 84| ¢.6978] 0.687621 O 68360| 0.G8838| 0.68841
Q

T
A =

1.8973| 1.80774
1.7985( 1.78187] NS
1.6560 1.68634] 7"
1.5713( 1574181\
465| 1.4655; 1,46454)) - K
1.3682] 1566570
1.2488\1  22857| 1.24850
1. 1457, 2 14403| 1.14408
150473| 1.04200| 1.04302 1.04301

0.04a| o 0415 0. 04508 0.94620 ¢.94617
0.851)0.8560| 0.85401} 0.55438| 8 85432
7640 7e03] 0.70768) 0.76828) 0.76818

Y612 0.6166) 0 61440| 0.6159%] 061555 0.61564 0. 61562
0.54% 0. 5588 0.548563| 0.551031 0_55021| 0.55041| 0.56037
0.464{ 0.4968| 0.49049| 0.49429| 0.49277} (49322 0.48311| 0.49513
0.448| 0.4440| 0.44068| 0.44624| 0.44345] 0. 44447 0.44417| 0.44424) 0. 44423
0.406] 0.4032| 0.39933| 0.£0725| 0.40215) ¢ 40445 040361 0.40309{ D.40382| 0.40383

We see from the path of the approximating function that we have
taken the interval too large. In particular, for x = 2.8, there is no
convergence, since the value ¥, , for example, is further distant from
the true value than was the initial value. We can therefore reduce
the work of calculation if we proceed stepwise. First we improve
only the first three values, then we correct the fourth until it no longer
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changes, etc. The final values Lie a little further than 0.4 mm. distant
from those found by drawing. The work of computation weuld net
have been much greater if we had started out from far worse initial
values.

The advantage of the approximation methoa is that errors ocea-
sionally made in the course of the ealculation are automatically cor-
rected. In additior, large errors of calculation are quickly  ngticed
because of the irregularities which appear in the representation of
the difference table for ¢’ They should then be con'ectecl:at- onee,
since otherwise they can make a manifald repetition of\the"process
NeCcessary. A

5. In the case where the differences of fourth ordernpXlonger need to be
considered (as in the case discussed above), we can 'ﬁ?oid the construction
of the difference scheme and use one of the quadrature formulas for in-
tegration given in Art. 15 and Art. 16. Bee Jof the small effeet of the
third ordinate, the special Simpson formulﬁ@x‘fen in 15(23) is most suitable.
The equation (6) would then become: )

2 . NS , h
W e =gt [ o dm = N G0 By — i) s

In the example of the ‘pi‘t;é:éding section, we would perhaps have
taken the values from 1%9°1.4, and caleulated according to the fol-

lowing scheme: A
x By Ii’.{[.n-’ N #im Win ) Yia)
L 2 s
1 2 . —1 3 2 =
11| 1.898,\./=1.0430 1.89774 1.89775 .
L2 | 398 —1.0725 1.79186 1.79189 1.791 o
1.3 | Aest | —1.0005 | 1.68362 1.68366 | 1.68365 | 1.68365
4 5 574 1.57419 1.57418
1.4 4 4674 | —1.0071 1.574 1.
1) : 1.463 1.463 1.46460
(6} ; 1.354 1.354
o i * 1.246
a7 i I
O We would then have caleulated gy, from the ap}{):()@lrlnatmn valu;ﬁ
" 1 e : "
N\ ) i, ¥y by means of the equation ' = —(zy — 1), Then we wo

have ecalculated the approximation values yu) up to & = 1.3, by

means of the shove formula:

1
4 —— = 1.89774.
(7h}  y(l.1) = 2 4+ 0.1(—5 — 8.3440 + 1.0725) 12 1.89

A repetition of the calculation gives mz?y a negligible cl;la;gzt if;-
¥(1.1) and y(1.2); we therefore do not consider any furthe;j;: culation
of this value, but consider the value of y for x = 1.5. This give
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corrected value yo. Here #(1.2) remains unchanged; we calculate
new approximations for ¥({1.3) to y(1.5) ete. We see that more Tapid
progress resulis with this stepwise procedure than would have been
the case with the lazger interval. This is also true with the use of the
difference formula instead of Simpson’s rule.” : '

NOTER

1. See Picard, Troité d' Analyse, 2nd ed. (Paris, 1005), Ch. XTI, HI.

2. Runge, Jahvesberichi der deutschen Math-Ver. 16 (1907), p. 270. N\

3. Runge-Konig, Numerisches Rechnen {Beslin, 1824}, p. 300. \' e

4. Groenveld, Z. f. angew. Math. w. Mech. 7 (1027), p. 150. \,

5. Lindow shows how other formulas derived in Art. 12 can be ussd for thedintegration
of differential equations of first order by stepwise approximation, Infinitesimalrechnung
(Berlin, 1928}, Ch. IV, 1-5. &0

A\

Q

34. Approximate Integration of Diffexential Equations
of Second and Higher-Orders.

1. While the methods deseribed in j.h\p Yast two paragraphs for the
approximate determination of the intégral curve can also be applied to
the integration of equations of higher otder, the extension of the graphical
methods mentioned in Art. 31 bag'no practical importance. Bub we can
easily get o general picture of the path of the integral curve of an equation
of second order. The method\is'due to Lord Kelvin,! We draw approzima-
fion curves fitled together{from circuler arcs. These curves are so joined
together that the ta,pgeﬁt of the curve changes its direction continuously.
As the radii of the Spdividual circular arcs we use more or less aceurate
mean values of the Fadii of curvature of the pieces of the integral curve,
as approximated-by the circles under considerstion.

We cons\ide} the equation

N\ y' = y)
ar{d’%lt f('m, ¥, ¥') be a continuous function of its three arguments. This
) gguatwn is now so transformed that the radius of curvature can be caleu-
S “\lated for it as & function of the coordinates and the tangeni angle. If
C Y7y = tgr,then ’
| 1 dr_ 1 dr_ L1
cos’ 7dt  cost r 4%  cod 7P

y!! —

where p is to be taken as positive if it lies toward the forward direction 88

the y axis to the x axis. The general differential equation of ‘segond order
can therefore be put in the form

1
5 = o8’ rf(z, y, tg ).
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In case the right side of the equation is suitable, and if we want to trace
out a rather large number of integral curves, we can sketch a nomogram
before beginning the construction. From this we can evaluate p from the
values for «, y and r. Otherwise we must caleulate p each time.

2. In carrying out the construstion wo
can proceed in the following way, similsr
to that followed in 32.2: At the initial
point 4, we first ecaleulate the wvalue p,
from the given values z, , ¥, , y{ . We plot
this value in the proper sense on the line
perpendicular to the tangent direction, HhYod
which is given by y{. We then obtain the R
point M, , about which we deseribe a cireular curve {of\radius p,) with thesub-
tended anple o. For the endpoint B, of this are we detérmine the eoordinates
Tz, i, and ¥, from which we now calculate p,'.QWe plot p; from €, out on
the radius M,C) belonging to half the central angle, o/2. We then o?:)tam
the center point M, of the next approximiation circle. We now deﬁ';cnbe a
portion of the approximation circle aboud !, with g, a=s a ra:dius. This eurve
has perhaps the central angle 3«/2. Fhis arc cuts the r@us M,B; at the
point A, . If the point 4, differs markedly from B, , or if tl'le slope of the
new arc at A, is essentiafly different from that of the preceding one at B, ,
then we caleulate with the goordinates of A, and the eorresponding 31er
again, and carry through £he ‘construction of the new are. We repeat this
until the new intersectién) point of the circular are with M5B, no longer
differs from that of th\q}ﬁ‘acedj_ng one, and until the al?pe is also the same a8
that previously datermined. Now we consider th(f, poing of the curve A_,,B_,
with the center 11{ Land so forth. If we want to obtain a quick approxl_mat.mnci
we can make(the cirele radius somewhat larger or smaller than is f01:1n
from the Qia\lﬁx“lation, according to its change from the very begmm;:flge
With sbai:te" practice, & technique can be developed for estimating th
ineresse ‘or decrease of which is then necessary. We shall th_en very rapidly
obtéiii a good general sketch of the path of th:e 1{3.1:10118 integral :Ourv:se

Ju kach case it is advisable, for sketching the individual curves, fnt,he
the values of z, y and y’ used for the ealeulation of the final :’a;lues (t)h -
various p, sinee we can calculate the corresponding values ?:i ;(i}f;ration-
Consequently we can correct the first sketeh by the method o d

which is further described below.

*'and later
. t developed by Boys' and
3. A small celluloid ruler, as was firs ::ion- The ruler has a hole §

revised by Rothe,® can facilitate the construct e rul ‘at this
for the dr};wing pencil. Two mutually perpendicular lines intersect &
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point, one of which runs parallel to the ruler. Two marks, E, and E,
are placed on the other line, each at a distance I from 8, and serve for s
convenient determination of . The line parallel
to the edge has in general a uniform seale. The
conter M of a circle is placed on this scale,
either by means of a pin inserted through the
celluloid, or by means of the third legofa small
‘tripod, the other legs of which are seh on the
drawing paper. The angle subtendedisindicated
by special marks on the ruler. Wecanintroduce
still other scales on the straight edge, under
certain conditions, in ordexgosimplify the caleu-
lation of p. Most frequehtly a scale for 1/z will
be useful. The determination of &' by means of
_ the marks follows\in“this way: either we read
Fic. 125 the value on the'schle of the straight edge of the
point in whieh it'is intersected by the z-parallel
through E, , which is &y’; or for very Jarge values of y’ we determine the
value for the point at which it is cut By the y-parallel through £, ; thisisl/y"
If the curvature of the integrabetirve becomes very small at any place,
(and therefore the radius of curvature becomes so large that it is impraetical
to approximate by arcs), then 1t is best to do the approximating by seg-
ments of straight linessfhe change in slope of which is ealculated from
the equation Ay’ = y¢Ac' = f(z, y, ¥")Az. We can caleulate y’ itself in the
neighborhood of peiuts for which i = 0 from the equation f(z, ¥, ¥') = 0
If we want to the method with polar coordinates r, ¢, we fise the
equation in the form
NS
9 \ % =y’ = f(‘l", o, g‘%) == f(?", P, r’).

o
T S

Thka,avant,age is that we can take »* as the polar subnormal directly from

.rthe figure; the disadvantage is that the ealeulation of
AN

O o = Ok A T
54 2t et
is qu_ite detailed,* while, with the use of cartesian coordinates, the de-
termination of p is simpler.®

4. This method becomes especially convenient if we do not noed
to determine y'. This is the case, for example, in the determination

of ‘t,he‘me?-idiaﬂ curve of the lying or hanging drvop, the equation of
which is given by Adams in the form
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1 4 sin ¢
i x
where p and r are the prineipal radii of curvature of the surface, i.c.,
p 35 the radius of curvature of the meridian curve and r is the length
of Its normal to the axis of rotation. In this way the origin 0 Hes at
the apex of the drop and the % axis lies in the direction of the axis of
rotation, the positive direction toward the interior of the draph\At
the apex of the drop, i.c., at the origin,
# = r, and therefore p = + — 2/8in § = 1.
The positive sign in the equation holds for
the lying drop, while the negative sign
hoids for the hanging drop. Fig, 126 shows
.asketch for the case # = 6, In this case the
meridian curve is always approximated by
an are drawn between two successive {solid
line) radii, while the dotted radii serve ng\ J
the measurement of the valuec of r. Iféwé,
introduce the values ealeulated by Adams®
by the method of the caleulus of différgnces,
or by Koch” hy the Runge-Kuttamethod
in the drawing, then the very.small devia-
tions lie within the accm'{mc;’cﬁbf the draw- Yia. 126
ing. .

1

74\

5. The numerical msﬁ;oés of integration described in Art. 32 can be
extended to systems Xf\simu_ltaneous linear differential equations of any
order. Each such eqtiation ™ == f(x, , %, - , " ") can be transformed
by introducing q,'iie\"v variable for each derivative. In a particularly simple
system of sim?{ltaneous cquations, we have

n—1} ’

\:"\'?}'=u, y=u =y =u =z
n N
‘.j:" z’:f(x’y,u,v,“-,w,z).

hlI:my cages we shall use other substit-utions., perhaps to' get a sys:;:ew of

\eqilat-ions which ig morc convenient for numerical calculat}on. The f‘l‘l"&“
tions given in Art. 32 can also be extended to systems of hir:ca.r equa lon]f_
In these latter cases, the expressions do not ‘become mu;:_ r(}lz;e ::;I;};ns
eated, provided that we introduce r:orrespondmgly generalize ) u[; sl
for the operators. For example, if we have two simultaneous eq

@ y = flx, v, 2) 7= glx, 4, 2,

then we set
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(28) D) =w.t ot ge,

etc. We can then obtain identity of terms with the factor 2 in a Way com-
pletely analogous to that of Art. 32. Here we give only the ext.enal?n o{
the formula (3) of Kutla given in Art. 32, to two gimultancous equations:

¥ o= flz, Yo, Zo Yy
O\
V¥ = gz, th, %o )h
Lk % vy 3 )
k7 =J'(:=o+§,yu+§ ,zo+§' R; \J

R 4 y_) ¢
i =9(%+§:yo+'§ ;zﬂ+2 h ":"\

\Y;
L4 lff { \
AT CRS YLy <y

, h B e\ i
= f’(%+§’y°+?.}; 5 )

EY = f(% + R, Yo _Fk?u, 2 + II.,I)h;

.

1% e g(zty {.\ﬁ"% 3Kz DR

'.k =~~§’(‘:k'r‘+ 2" 4 2% ku))
o\’,,.‘

4 \

where & and [ are the increments of ¥ and ¢, which correspond to an ir-

\'"\3 trement, / of z. Here also the error in the first approximation is proportional
1o h*. We again obiain a measure for the resultant error if we earry out
the caleulation a second time with the doubled interval width and take
perhaps 1/15 of the difference of the two results.

ar -+ b + 21017 + E(&))’

O]

) 6. If, instead of a general system of linear equations, we have the
simpler system which arises from an equation of higher order, e.g.,

@ Z=g@mya, ¥ =z
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then the equa'tions (3) are materially simplified, since the increments &
and ! are obtained from the values for k. The system then becomes

® &7 = (o0 + 5 s 1

Bo=ak Vo=@, w, a

I

re l' h k: r
k =(zn+—2-)h;z~ g(xo+§,yu+‘:?-',zn+%)k
. A
h 2¥ ,r A
g(zn+§,yo+%,za+%)}.,\”\
o S\

]

Z

k(l'.l = (20 4 lnr)h; I(l} = g(xu + k, Yo + kn.r, Zo "k"l}{.’)k

4 .

‘ \
k = %(k! + Oat? + Afater + }C“));_J = _]6; (l.r +:'2I" + ol + I“)).

. AT
Nystrom® has devised new formulas for & sysﬁ}:m of differential equations

of second order which ean be reduced to a(s}stem of equations of the form
(4). These formulas yield the same appfoximation ss the sbove with
somewhat less caloulation, However, we.émploy the above method because

of its clear construction.

a3
N,

7. Az an example, vge‘;;itke a pendulum oscillatfon with a linear
6) \'\‘~~’w" + B¢’ + asing = 0,
where p is thé angular displacement, and 8 = 0.1560, a = 4.905. The
corresponding system of linear equations is
44 ~\\ ¥=—Bz+ap), ¢ ==z

W'é%aj:e ¢ = x/2, 2 = 0 as the initial conditions, so that the pendulum

. Ewings down from the horizontal position without an initial impulse.

PR \ The magnitude of the interval for ¢ is taken as & = 0.2. Calculations

N\

3

are carried out according to the scheme on page 400 by use of the
formula given above of Runge-Kutta. Both of these values are entered

in the table. ] .
The tables of Hayashi®® are used in the calculation. These permit

us to set up the trigonometric functions for the angle in radians, and
consequently make a reduction to degrees unnecessary. The calcula-
tion is carried through up to ¢ = 5 see. The following values are

obtained:
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A\
& 3
w
. v
‘l\ 4
. L - )
$881° 1+ | T8L8'1— | 09P'G— Mook 0RTLT— 30
£ess0— | ¥R0G'0— | BIS80— | 61980 9600 — | 8ISP— | ZE6E0 | 008560 06811 wﬁm.c.l OFLE0— | 08A8'I—
GoTg'i— | EBO60- mﬁw‘.ﬂl FEOLF— | TEGE0 | BT1L6°0 | 66381 | #699°0— | AFBED— | 98G¥1—
gopg'l— | s216'0— | TEE¥- | PEIST— | €32T0 | CEISG'O | BLLET | T9A9'0— | 9.8E'0— | BLEVI—
£OF60—- | £9760— ﬁﬂ.«\w:. BISEF— | S0ST0 |62U66'0] L84F1 | 68610~ | 6Z6T0— | L¥O8G—
LELYTE | LPO60— | €88LE— ' PERg 0~ 1]
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96E6'L— | SFOB'0— | SEZRF- | 166%F— L0200+ | 08866°0 | LIZS'T | BEGT'0— | 9960°0— | 6E8F0—
FICHT— | I996°0— | o82%F— | 0%0G'F— |V 9900+ 1| sozeT | go61°0— | 1860°0— | S0BFO—
8028'T 0 | oiseo— | o1see— | owoes— | 0s06%~ | & 1| 80£9T 0 0 0
£ 7
& 2 I RS 7 & urs ncwmﬂdxln\\a it & I3 FRTIEN 2 ?
206°F— ¢ P
..M.:l
O
£ 2
Q.
¢
:.\o\
.u\v
o
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H E @ ! £ P
0 0 C15708 | 2.6 | 424448 +0.3534
0.2 | —0.9647 14737 | 28 | +1.8130 +O0.7877
0.4 | —1.8731 1.1884 | 3.0 | +1.0057 +1.0749

0.6 | ~2.8072 0.7358 { 3.2 | +0.0956 | +1.1853

0.8 | —2.9487 01720 | 3.4 | —0.7942 | 41.1145

LO | —2.7420 | —0.4061 } 3.6 | ~1.5840 | +0.8742 ~
121 -2.0696 | —0.8031 | 5.8 | —-2.1490 +0.4959 \
B4 —LI6I8 | ~1.2184 { 4.0 | —2.3382 | -0.0400

L6 | —0.1957 | —1.3543 | 4.2 | ~2.0855 | —0.4093¢ }
L8] 407506 | —1.2081 | 4.4 [ —1.4783 | —~0.770%\

2.0 p +1.6227 | —1,0688 | 4.6 | —0.6821 —0.9851”

2.2 [ 423064 | —0.6614 | 4.8 | £0.1657 —1.0398

24 [ 426212 | —0.1612 | 5.0 | +0.9703 | /20248

"N
’ N
f $
] N
1\ Ko
7 - \._\ \
4 4 s/ \\
95 ) W =
_‘_: DY — r
2 AR 5
‘afi
-7_:
P\% Fre. 127

The calii;ha.ted values are plotted in Fig. 127, and are connected byf'

thedbtied curve. The curve which we get as the mtegra.}&curve l;‘.}

the above equation is plotted for comparison. Here “edretp c? ,;;tmi

»\(p) , L.e., we introduce a quadratic damping term. This : et }i::n;m ation
"\Wof the cmve is performed graphically in Fig. 128, an

\ given here only for comparison purposes.

8, The second method considered in 32(8) fm: integrat;ion calldz-;suFl;:
extended to systems of equations and to equations of higher order.

example, if we have two simultaneous linear equations
y! - f(xl Y, ?): 2 = Q‘(ﬂ:, iy z};

: s and z,
then we construct a difference scheme for f and g up to ym an
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calculate new values ¥,.. and 2., from these, by means of the formula

given in 32(7). By substitution of these values in the functions f and g,

i)
7t ‘
FNG p

) v
T .r‘&,,,...b,. "

A v - 3 .'... \
[y e /&(ﬁ "". A EREAN { AN \ga 'y
Lo, CAREE SFONG L A F S
FoagNy T T e 00 gy €y
" ;“:r‘-"‘ Ry 4 J'.‘;’.r P yg— v "._( 4 .
S 2 Ity /) iy ™ i Vi
O T Gy e\
S \%J(,_?z/fr S Yo ) \

N “) Fiq, 128
we obtaf{‘;ﬁfle values y/.,, and z/., with which the difference seheme i
continued. , )
Thb cateulation is much simpler with an ordinary differential eguation
_of higher order. For example, if we have an equation of second order
N\

e v =),
then we need only prepare a difference scheme for %’ From thig scheme
we calculate the next value of 3/, by means of the formuls

251 ..

1
Ymes = Yo + h(y:“' + _2. A'I"—ﬂﬂ!) + 1_52 A:;-l + g As—(au) + '_‘7-27]'&"’

(9 .
95 s
+ 280 A oy * - ) “+ Bpe1 ,



DIFFERENTIAL EQUATIONS OF BECOND AND HIGHER ORDERS 403

which correspdnds to the formula of 32(7), and which follows from 12(1).
We get the next value of y,.., from the formuls following from 12(18):

Ymi1 = 2?}- = Ym-2r + kgy;.’

S '
(10) + 12 (A?.._l + AL b Abe Atsmy —
™\
1 4 1 5 7
—%Am—z—"l_oﬁm—{s/z)"' + En 4 B . A

e
By substitution of both these values in the function f we gci} t_hé value
Yist , with which we continue the difference scheme. We'}‘can calenlate

the beginning of the scheme rither by series developmenf&for by the Runge-
Kutta formulas, or by the method of iteration to ha'\d‘cve]oped below.

9, As an example, we take the equatic?\?rhich waa treated above
by means of the Runge-Kutta formula; ;.\

(ﬁ) WH = —p‘pt’.i_  Bin @
with the initial conditions @, =\#/2, ¢f = 0. From this it follows
that ¢ff = —ea. To be able to galeulate the first values of the difference

scheme from a series develogment, we differentiate the above equation
repeatedly. This gives ™\ ’

¢H' = "'510" — a&gf«?OSlp ‘p;u = J-Ba
P {
9 __ rre O ’r g - W _ _82‘1
o = =B~ cos @ + o " st @ g
¢ = ._:&'P“’ —~ ap’’ cos ¢ + Bap'e’’ gin ¢
9.\
o £ - J _ 5
\:\.:{—mpaeosqo we = +Fw
& . s
P = — 8™ — ap'® cos e + dap’’¢ sing + Bap " sing
~\'
\d . "o ) 3
) + Bap?’ cose — ap sine 8 = —flat 3

= — 8™ — ap'™ cos ¢ 1 bap'™y’ sin p + 10ap’ " sin @
+ 100 ”'§0,2 cos ¢ — 1500(0”29‘" Co8 ¢ — I&IP's?’Hﬂini"
—ap®cong o7 =+ — 138

@(s) — ;,qu‘7’ — ﬂfif-‘m cos ¢ + Wts) ‘Pa sin g + lﬁapwqo”siu@
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4 1800 cos o + 10a¢” " sin ¢ + B0ap’e"'e" cos ¢
— 200’ e P Ein g + 15a¢ * cos e — 4bep’ %S sin @

— 1Bag e’ o5 p + ap " sin g o8 = —pla + 386°".
If we calculate these values for the given 8 and o and substitute in
the series expansion of ¢ (in powers of 1), we get ~
o — 1570796 — 2.452508* + 0.12753£ — 0.0040737¢
AN
+ 0.00015519¢° + 0 401712 — 0.047485¢° + 0 0027‘066t + .

N

and from this, by differentiation, : N\

¢ = — 4.90500¢ + 0.38259¢° — 0 0198956 ;}\0‘00077593

+ 2.9502¢ — 0.332394° + 0.0216@# + -0
N

By substitution of the values of,,&g'ﬁ‘ these two series, we get the
first five values of ¢ and ¢', whiclharé entered in the second and third
columns of the difference sche:me ‘below, down to the horisontal line.
If we substitute these values. 3P the given equation, then we get the
corresponding values of @& x‘\"hlch are entered in the fourth eolumn of
the scheme, also ic the“horizonial line. The difference scheme is
formed from these Yg.lues

In order to copsider how many places can be kept if we break off
the guadratu l}{ormulas after the fourth difference, we estimate the
remainder tc The remainder term of the first interpolation series
l.q

't\:TRﬁ | = BFO0) f 0t 4+ DU+ DE+HE+ 4,
& 51

'\‘S\uie the scheme is sct up for lp”, then we have (32.9):

: \ R, —-ha ¥ 1 L 3

\.\3 . | Bs | () 735 120 - 240h° = 80A°,

where, for ¢'”, the value is taken at the point ¢ = 0. In the scheme,
h = .05, =0 thai

|R:| = 1 X 107°.

In the first step therefore, an error afready cxists in the sixth decimal.
We can therefore carry out the calculation te at most five places. A
much smaller error, namely 5 X 1077, is obtained if we break off the
second integration formula after the fourth difference. We shall there-
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fore ecarry through five places, under the assumption that the numerieal

values given in the differential equation are preeise, Otherwise w

must be satisfied with fewer places.

The difference scheme now becomes

e

L

r

¥

A

o Al A AR
000 | 1.57080 | o0 ~ 4.90500
+ 3821 O
0.05 | L5646 | —0.24430 | —4.86679 + 97 \
+ 3018 )
0.10 | 1.54640 | —0.48667 | —4.82761 + 420 | N 7| 20
+ 4338 o M 528
0.15 | 1.51605 | —0.72699 | —4.78423 + gdn +189
+ 5286 |meimdenl 4 717
0.20 | 147374 | —0.96493 | —4.73137 & 1665 +174
+ 6953 + 891
0.25 | 141961 | —1.19984 |- —4.66186 “42556 +124
: -+, 9507 +1015
0.30 | 1.35383 | —1.43068 | —4.56679 |z (> +8571
ANY-12078
0.35 | 1.27664 | —1.65591 | —4.43600N
0.40 | 1.18837 | —1.87349 PR {
N :
From the values sbove the horizontal lines we next form
& 5 3 251 ,.
e = o —}—’}{é?{’ =+ %‘ Al + 12 Af + 3 Agm =+ 720 Az)

X\

= £9.96493 + 0.05(—4.73137 + 0.02643 + 0.00395

N\Y;
4 »

N

.

+ 0.00198 + 0.00072)

\V
N == 1.310084.
\

It cxactly the same way, we calculate

(x+£n+M—

.»\’ -
m\J

\‘;

rr h
ws = 20, — @z T+ Wl + 12

1

]

2.04748 — 1.51605 + 0.0025[v—4.73137

La)
25 42

1 + 0.00195
S + 0.00528 + 0.0019 )]
+ 75 (0.00948

1,41961.
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We calculate ¢ with these values from the giver equation, and add
this in the fourth column of the scheme. We then ealculate the further
differences from which we then obtain of , ¢s and ¢f, ste.

A comparison with the values of Sec. 8 shows good agreement in
the values of ¢, even if small deviations in the values of ¢ appear,
which inerease with increasing {. The values found here are the more
precise because of the smaller interval,

N\

10. Finally, we must mention the extension of the method of iberation
to systems of linear equations, and consequently to differential 8quations
of higher order. We shall illustrate the method with two sunulta.neous
equations “~\ :

(1 1) y' = f{z: y! Z), z = g(:!:, y\
which we immediately write in the form of integral equations

@ =t [ sev9d s Znt [ o0

I we now have any approximate soltiohs y,, () and 2., (z) of the above
equations, we substitute these inthe functions under the integral signs,
and carry out the integrations., Tkns gives us new approximations ¥ ()
and z.,,(z). We continue w;t‘h these in exactly the same way, ete.; for
example, we get the (n -+ 1)st approximations

y{-+1»\= Yo + f F &, Yo 5 2 d,
(3) \

) C\H ’" z(:u-l} =& + f {5‘3 y(n) 3 g(n)) dz
To find :rﬁhe error of this approxrimation, we subtract (18) from (12):
N

&

Y — Y%y = j; iz, 4,2 - iz, Yon , 2em)) de;

Q9

Nt g

2= Ty = f . (g, ¥, 2) — gz, Yw , 2)) d2.

The integrand can be transformed in the following way:

(15) Y = Youry = f* l:f(z, ¥, Z) — .f(x: Yoy

2)
¥— ¥ @ ym)

+ 1€, 90 .9 — fz, 4., 1 Zem)) z — Zm)]

= &m
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& — w41y = f,_ [g{x, y’g’:—_ i(::)}iul) zz) (y . y(“‘)

+ 92, Y 12) — g2, Yo ,
g — z(n)

Ew) (.. z(..;):l dz.

The difference quotients appearing in the integrands are the mean values
of the first partial derivatives of the funetions f and ¢ for values of the
variables which lie in the intervals from y to y, and z to 2, . If weunow
assume that the absolute values of both derivatives of f in theN\interval
under consideration are smaller than M, , and those of g smaller than
M, , then, if we denote the maximum absolute value of the’ differences
¥ — ¥ 80d 2 — 2, in the interval from z; to T by |3 | 8nd | € |,
we get (by the mean value theorem) ¢

[ Sensns | & M} 60y | + & D |z— % |3
(15a)

beaen | 5 Mol 30 1 4 | eg;&\'l z =,

ie., O

U0) | Swenr | + | ecarn | S (M, R D 0w | + e Dolz — @l
If we choose the integration intf?:i;é,l' s0 small that

(16a) | M, + Myhiz — 2l =K<,

(16b) | 8en | +\|~%k:1: | £ K( 8w | + 1 em DEK(bn ]+ ew s

i.e., the deviation{ of the approximation value from t.he‘ true value becomes
arbitrarily stnall by eontinuation of the process, .prowded th?,t we do not
make the inferval too large. The actual method is the following: we start
from the'«givm initial values Ty , %o , % , 30d s_eek first approximations
¥ ,';};,"in & small interval. These apprm_dmatxons can be ver;;hrogg;
We, improve these values by iteration. In this case we {ﬂw&ys use 1:he €
‘proximation values. For example, if we bave determined y.(z), en we

/“aubstitute the value z,(x) and y»(%) in g, in order to find 2:(z) by mlte_:-
:gration of this function. How large we mfgh'f f.o choose ;hg interval is
determinéd from the convergence of the 1nd3w4ual BUCCESSIve t:-g:rﬁoz;
mations themselves. If the approximation is earried 1_;hrough in this frst
interval until the latest approximation no longer dllffers frlox_n ! erl;xj_
ceding one, then we continue this func'tion in anoth-er m;erva_{) eu{; E?c oy
mate fashion, apply the approximation m_ethod' just described, etc.
this way we can approximate the solution piecewise.

We can exchange variables in gystems of equations, just as in the case
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of linear equations, if the function values become too large. For example,
if we want to take y as the independent variable, then we choose the

system

de _ 1 d,a 9=, 9,2
(16¢) Y - Fmy e Ay 1@,

instead of (11).
Q"

11. Ezample: For the graphieal construction, we take the equation

of the dariped pendulum vibration already discussed abowe) exeept

that we set the damping term proportional to 'ohe sq‘aare of the

velocity, g

7
S

{16d) ¢ = FBe" — asin g, '\a'

’(

where the sign of the first term on the rlght ‘side must always be
different from the sign of ¢'. By the suQQtjtutmn z = ¢ we got the
simultaneous equations L&
{16e) Z = T — d sl ¢ ¢ =z
For the constants we chooseji-h“c same values as above, § = 0.156,
= 4.905. Fig. 128 ahowsyihé method of the construction. It is best
to start from a first assimption z,, of the velocity curve (— in
the figure). We perliaps know this path approximately, since we
know something ab\eut the operation of the process. We integrate
this and get t e\cunc ¢ (). With the z and o values of this curve,
we ealeulatelindividual values 2’ by substitution in the given equation.
We plot theése and draw a smooth curve 2y, (f) through them. We
integrateN Hhis graphically and get the eurve {----- ), If we integrate
this a@sﬁn we get the eurve @, (f) (also ----- ). With ¢ (}) and
”\(c"}i we calculate the ordinates of the curve ziy, (), with which we
zpi’o eed in the same way as with z/,, , ete. The curves p(f) are drawn
Jnext to each other in Fig. 128. The last value ¢, , which no Jonger
differs from the previous, is drawn in. The starting points of the
curves (¢}, 2(f) and #'(f) are shifted somewhat in the direction of the
ordinate axis for greater clarity, and the starting points of the first
curves z(1) and 2/ (£) are marked by coordinate crosses. If we have the
final curves in the first interval, which goes from 0 to 1 in this case,
we continue the 2 curve, for whose continuation the path in the first
interval gives an approximation, into the second interval, and pro-
ceed as in the first interval. The final curve is extended according 10

Fig. 127 in order to make possible a comparison with the curve
obtained with a linear damping term.
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12, For the nymerical sclution of the differential equations of second
OrdEI: by successive approximation, we can use the formulas {9) and (10)
of this article, or one of the other formulas of Art. 12, especially (6) and (20).

Ezample: We consider the ceapillarity equation diseussed in Sec. 4

of this article. This may be written in the form of two simultaneous
equations

(16f) dx OB ¢ dy _ 8in @ Q"

de 2+ 8y — Gine)/x  de 2+ Py — (sing)/®

where the slope angle ¢ of the tangent appears as independeﬂt?ifériable.
Apainlet # = 6. Further the condition (sin ¢}/2 = 1 holds at'the origin,
so that ¢ = 0. The first approximation values ar€ taken from the
curve. As it turns out, the error of this value is, jngeneral, not larger
than 0.2 mm., so that the value lies almost within the }imit of accuracy
of the reading. The calculation is again periprmed over an interval
too arge for practical use, in order to show” how the solution is ap-
proximated. It is first carried out wit,i}Qhe slide rule, and the integra-
tion formula 12{6) N

"

g 11
(16g) y= h(wg_ﬁl T'T‘lé A?;s + 7_'26 Ayyp - )

is used. For an interval it 2.5° = 0.043673, the fourth differences
need no longer be considered. The values of the second dificrences are
completely irregular *{Eeca.use of the error of reading, as is to be seen
from the first i@a’l reproduced below:

ki T o & Al a2 2 ¥ Al Al #

o | 0000 Y0000 |1 0 0 RL
N 1.001 1 i—17 537 215 | 430 | —23 a5
2.5 | 0.0643™ 0.002 | LO0L —17 | 0.0437 | 0.0430 — 1| 0.00095
A\ 953 |—16 [|—IF 433 646 | 429 | —24 282
5 &086 0.004 | 0.985 —1& ] 0.0870 | 0.0859 —46 0.00377
Q 968 \—32 |— 8 424 1051 | 383 | —25 . 459
(75 | 0128 | 0.010 | 0.053 + olo1204 01242 — 3] 000836
) ' : : 0 —28 626

\) g3y |32 |— 6 400 | 1432 | 380

io 0.170 | 0.015 | 0921 12 | 0.1703 | 0.1622 —5 0.01%62
s99 |—44 |— 1 392 1786 | 326 | —3¢ al
12.5 | 0.210 | 0.024 | 0.877 +12 | 0.2005 | 0.1948 —14 | 0.02243
861 |[—33{— 3 376 2104 {312 | —40 950
15 0.247 | 0.032 | 0.844 —17 | 0.2471 | 0.2260 —@6 | 0.08163
g1 1—50 |— 2 357 2383 | 246 | —84 1042
175 | 0.283 | 0.044 | 0.794 413 | 0.2828 | 0.2506 — 2 0.04205
g |87 |— 2 339 sg88 | 244 | —28 0;;?:
20 0.316 | 0.054 | 0.757 | 0.3166 | 0.2750 0.0535¢
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The mean values are written in italics. For the next interval the
behavior of the differences is essentially regular. The successive
approximation values are entered in the following table. These are
caleulated with a slide rule up to the third approximation term, and
from then on with five place logarithms. Furthermore, the fourth
differences are also considered. We see that the approximation is
obtained by terms which lie successively above and below the final
value. We would therefore be able to shorten the process if we started
out from the mean values of two successive differences. Occasionslly
deviations are reduced to the inaccuracies of rounding offy o, con-
vergence exists at the end of the interval. N

s ™

7°%&

Ta T Ty Ty T4 s Ta X7, ) Ty a

Tl

. 00010 0000l0. 0000l0. 00aclo . 0co00{o. 0o000fo. 000000, 00000
0.043}0. 0437]00435(0. 0436]0. 04354[0. 04357|0 . 04355\ 04356
0.086[0.0870{0. 0864[0. 0868]e .08650/0, 08670[0. 086450 036680, 086660, 08667

0. 128|0. 120410.1685]0. 1292{0. 128756/0. 12899[0 42807|0. 128930 12850/ 12891
0.170{0.1703]0. 1694(0. 17040 16966(0. 17006{0 169860 16896/0. 160910, 16553

0. 2100. 200510 2080(0. 2090]0. 200070 20962]07 20933(0. 200470 200401020043 0.2004
0.247|0.2471(0,2467(0. 247810, 24600(0. 24743(0. 247070 247250 24716/0. 24720 0.2471
.50.283]0. 2828(0 . 2827]0 . 284810 2827316 28336(0. 2820410 . 28316{0. 28305/0. 28310( 0.2830
0.318]|0.8167[0.3167[0. 317810 318B63|0¥31734[0. 31687 0.31712}0. 31700[D. 31705 {.3170

3

Yo h Y1 a T ¥s Y W i

+000]000000{0. 00000 0.(30000]0.. 000000
.002[0.00095(0. 00096(0.00095]0 . 000951 [0 . GO0949
004{0.00377(0. 4037800037710 . 003777 (0. 002772/0. 0087730, 003772

]
0
0.
0.010(0 0083610 §0843(0. 00835]0. 0084060, 40830310 . 008398(0. 0083050 DD33E
3.015 0.01462:00147610. 01468]0. 014724/0 . 0146070 .014704/0. 014703]0. 014705
0
0
0

3

™

o ;QNaturally the last digite should not be used because of the inac-

curacies of rounding off. If we want additional decimal places, we
must work with seven place logarithms, or with 2 caleulating machine.
To continue the scheme for rather large values o, we first calculate
further approximation values for larger values of ¢ aceording to the
method explained in Sec. 8. These values can be improved by iteration
wherever necessary. For the practical application it is important that
we add only one or two new values, on which the method is applied,
}mtﬂ t.hee-e values no longer change, and then go to the next value, s
is shown in 33.5. In this way a great deal of ealculation can be avoided.

.024[0. 0224310022640 02252{0. 022589(0 . 022551 (0. 022564{0, 022558(0, 022558/0. 02255
.082[0. 08163{0. 03189(0. 03174{0. 031841 (0. 0317670, 031806|0. 031786/0. 031796/0, 0317
. 0£04205]0. 04237(0.04219{0. 042314i0 . 042212(0. 042271 10. 042241 (0. 042256/0. 14224

9 05853]0.05393/0. 053690 05335010 . 053717|0. 05379R]0. 0537560, 058777}0. 05376
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35, Integrators, .

1. Apparatus for the integration of Mbitrary"zurdjnary differential
equations, such as were given by Kriloff for aNgroup of equations, are
extremely complicated. In addition, these devides must have & special
{racing point for each function entering intothe differential equation. Each
such point would be led along by hadd\gh the corresponding curve. of
course the pen can be moved by son;e'rdechanica& means. But, since such
o mechanism can travel only onocertain curves, perhaps straight lines,
circles, ellipses, ete., or by slidifips in & groove on & few selected curves,
then the apparatus is no longem useful for the solution of any differential
equation, but only for such in which the corresponding funetions appeazr.
In practice it is then of.fmpportance to choose this guiding system so that
the integrator can e’\ﬁse}l in as Many ways as possible. ) _

Most integrators employ wheels with milled edges. In the instruments
of Pasecal and Jaecob, these run directly on the drawing paper, while the
wheel on othef-integrators, for example in those of Knorf, TUDS OB &
cylinder which can be chifted in the direction of it main ax:s by a serew

of van‘{iaj;e‘ piteh.

.2:3Sta.rting out from a construction given bg{ Potier, EB. Pasca.l" has
Py ié?e¥eloped & rather large number of different devices for the integration of
) apecial equations. )
* 'I'hae1 é??tegmtor of Potier is simpler than that of Abdank (14.8)_. Tt consista
of a framework LL' which can be moved pataliel to the x axis by means
of two wheels 7. The differential carriage W with the tracing pomi;h F
(which is moved along the given curve y = [ ()) can be moved 01;;11 e
one y-parallel rail of this frarnework, wl.nle th_e integral carnahge {,hl .
the motion of which is recorded by the point 8, Js_moved along t elo %;
The displacement is effected by a milled wheel.whlch malees an 311;? Y mﬁm
respect to the z axis determined by the connecting bar D of the differen
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and integral carriages. This directrix rod D_can be rotated about a Pin
M of the differential carriage, and may be displaced }:ty means of tl_le in-
tegral carriage so that the plane of the milled wheel (which is perp-t?ndlculal'
to the drawing plane) is always parallel to the rod D or, in the integraior

Ry Wre. 120

S g

of Pascal, cam be set to aldertain angle o = arc tg m with respect to this
direction. For the firstrease we easily read from Fig. 129

h , i@ =Y
\, Yr=d4 = 2
\ b
N\ .
where b is the)s projection of the distance of the axis of rotation M from

the cont:a.qﬁ}(;int of the wheel. We can therefore integrate linear differential
equat}‘{@s of first order

T
&

\ Y
At V43 =3i@

N\ " with this instrument, where f(z) is an arbitrary funetion. If the plane of
the 'wheel forms the angle « = arc tg m with respect to the directrix, then
the integrator draws the integral eurve of the equation :

Yf
1 _—:,'?;f = %[f(x) - YL

I we add a second tracing point to the apparatus,® which permits us, in
tracing on a curve z = ¢(z), to make the separation of the two y-parallel
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rails equal to g{z), then the apparatus would, in the first case, integrate
the general differential equation

1 f(=)
Y+ =¥ = .
g(x) g(=) _
A correspondingly generalized equation is obfained in the second case.
The initial condition can be satisfied by an appropriate initial position of
the integral carriage. A

3. Since the simultancous operation of two tracing points is,zd}.vays of
doubtful accuracy, Paseal modified the instrument in another way For the
one group of apparatus, he replaced the straight edge by \ajéurved rail
which is capable of rotation either about the point M on the differential
earriage, or about & point of the integral carriage, and which then can be
shifted atong the differential carriage. The plane of $he)integrating wheel is
then paraliel to the tangent to the curve, determinetl by the rail, at the point
which has the same abscissa as the contact ppinb.of the whecl, or it forms
o constant angle with respect to this dizdetion. The Riceati and Abel
differential equations, for example, can be integrated by such a device.

Pascal also replaced the straight rod &%, on which the integral carriage
runs, by a curved one. The equatipiof the path of a projectile in a re-
sisting medium can be integrated Svith such an integrator, The resistance
law determines the shape of thétrail L'.

Pascal developed a second group of integrators from the device.of
Abdank-Abakanowitz (14.8) *He made the pin P in Fig. 44 (through which
the direction rail runs){meavable. 1f this motion is independent f)f that of
the integral ca.rriaggr:\ﬁhcn we can prepare an apparatus which mteg:rate?s
the equation of the.path of the proj ectile for each res_sistaqce !aw which is
given in graphiei‘,bl form. On the other hand, if the motion of Pis depfmd‘?’nt
on that of thé;d{fferential carriage, we can then solve integrai ef}uatlonﬁ-

Finally{ & third group consists of the polar integralors, in which the twﬁ
rails Iand L’ are no longer parallel, but form 2 com&ta‘nt angl.e with .eic
othér) This angle can be adjusted over an arc which is provided with a

Y “Other integrators, which de not permit us to draw the int?g;'al cin;;?
directly, but which de pertnit us to read off the value of the (;nbeg}awoy
each value of the independent variable, have been developed by

from the bar planimeter.

P

4. In eonclusion, we shall describe the instrument of Kno:r, wh;ch usfiz
the milled wheel R in connection with a eylinder 7', rx;ox'}rjable 1?11 (ﬁg 1If
axis (Fig. 130}, The wheel resta on the outer s_urfacfz o tt ]fa, :3;116 w];eel
the cylinder is rotated, then this is shifted on its ax1d 50
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deseribes a helical path. The pitch of this helix is dependent on the angle
which the plane of the wheel (perpendicular to the drawing plane) forms
with the plane perpendicular to the axis of the cylinder. Sinee the axis of
the cylinder is parallel to the plane of the drawing, this plane is also per-

Fig. 130

pendicular tro“tthe drawing plane. Such screws of variable pitch were
frequentl}t\‘l%ed in earlier integrators.® In Knorr’s apparatus, the rotation
of the eylinder axis W is performed by means of a toothed wheel Z driven
by Qeﬁdless screw 8. The eylinder drum 7' earries out the rotation of
thelaxis because & pin ¥ fits in a longitudinal groove of the shaft W
~(He. 131). :
\/ The integrator of Knorr is used for the integration of
equations of second order of the form

ay” = fi(y) + foly) + ful2),

in which the three functions must be given as curves. For

Fio. 131 arbitrary initial conditions, the apparatus then draws the

. curves y'(z) and y(z). Sinee three arbitrary funetions
appear in the equation, the apparatus has three tracing pens, which are to

be moved, by hand, over the corresponding curves: the point F, is moved
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on the eurve f,(y") drawn on the plane E, » F2is moved on the curve f,(y')
drawn on the plane E. , and finally, Fy is moved on the euive fa(z) drawn
on the drum T, . The two planes, B, and F, , are each coupled with & serew

- of variable pitch, and are displaced, together with the drums 7, and 7, ,in

the direction of their axes. In this way, the three tracing pens are always
on the corresponding values y’, y and «. The carriages with the three tracing
pens slide along the rigid runners LL and their deflections are d
algebraically by means of a cord (the broken line in Fig. 132) whieh is

L e P R -
ﬁ& I £ : Lgr S £ Hr' O |

R P .2

‘i £ it 4 .\ ’,

i & @,...‘g} 5

] ) ”l'f"‘lf 3 i

[ = S j

{ NI

! - ) W5 _ ¥

4 | lr*.:.
§ -

oY Fra. 132
NS
stretched orpthese rails by means of weights. The values are transferred to
the devies W, which assigns an angle of inclination « to the wheel £, , 80 that

OO atg o = i) + ) + Hi@.

R “Before the beginning of the integration, the entire. apparatus is bl“O‘l.!g.hﬁ
into the rest position. Then the ealculation is carried out for the initial
conditions, i.e., the tracing pen S , which draws on the drum ’Ts , and
which is rigidly connected with the plane E, and the dru_m T, ,dlS mo;ed
{together with these) a distance y'(mg_) i'ron_n the z axis of the rum sd.

Also, the drawing pen S, , which likewise wrl'tes on the grum T3, 15; mow:;s :

together with the plane ¥, connected mt.h_ it and the drum Tsh, o !;aoed

tance y(z,) from this axis. The tracing l:lomts P, and F; arEe t ffnwi roed
on the curves f,({y/') and f.(y) of the drawing planes B, and E .t,h o tow
turn the drums through on an are element dz, by means of the
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serew and the toothed wheel X, whileé we also move the three tracing
points on the diagrams, hen.the drum T is turned in the direction of its
axis by [f:(y) + foly) + fs(@)] dz/a = dy'/a. The curve drawn by 8,
on the drum T, then has continuous tangents, the direction coefficients
of which are proportional to fi(y") + f2(z) + fa(z) and whose ordinate is
therefore proportional to ¥’ (x). The displacement of the plane ¥, now
produces {by means of the direction control BY an inclination of the plane
of the second wheel R. by an angle 8, whose tangent will be proportional
to #(z). The drawing pen 8, will therefore draw a curve on .'\thdrum
T, whose tangent has the vaiue tg 8 = wy’ (). Tts ordinate wili therefore
be wy(x), i.e., it will be the desired integral curve. W

The integrator is used especially to construct the path;\ime, and ve-
locity diagrams of a piston, if the resisting force fy (s)o\é,(i,d the aceelerating
foree P = f,(v) are given. ’ O

NOTES o\

1. Abdank-Abakanowitz, Die Integraphen (Leipeig/ 1889), p. 166.

2. E. Pascal, [ miei integrafori (Naples, 1934). Abstracis from this are given by
Galle, Z. f. Instrumentenkunde (1822).

3. Willers, Z. f. Math. w. Phys. 59 (1911}, p- 36.

4. Jacob, Mémorial de Vartilleric navale (1909, 1910} ; Le caleul mécanigue (Paris, 1911).
Willers, Mathematische Instr te (Berlin, 1926), Art. 19. _

6. Knorr, Organ fiir dis Fortscheilte des Eisenbahnwesens, 79 (1924), p. 353,
6. Abdank-Abzkanowitz, opagit., p. 17 ff.
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Abscissa, mesn, 149
Absolute error, 1, 230, 271
Accuracy of reading, 8
of slide rules, 21
Additien curve, logarithmie, 232
Addition logarithma, 232
Adjoint equations, 288
Alignment charts, 33, 38
Analysis of empirical functions, 296
Ansalyzers, harmonic, 331
Appr;g)dmsting ourves, caleulation of, 271,
[+]

Approximation by linear functions, 300
Arc length, determination of, 161
Argument interval, determination of, 10

Bernoulli numbetra, 162

Bessel'a integration formula, 119, 122, 143

Bessel's interpolation formula, 65, 107,
139, 162

Binary scales, 41, 44

Boundary conditions, 289

Boundary value problems in differcneg ¥
equations, 286 "

SN g

Calculating machines, 45 .
division techniques on, 57 ‘\
sguare and cube roots on\g e
summation. techniques,on,

Caloulation cheeks, 99, 218, 267, 270, 343

Calenlation error, 2_ 4

Calculation scheme Fof-Graeife’s method,
for ha.rmanig.én;tysis, 345, 354
Homer's, 95, 92, 98, 229, 239, 257, 262

for inte ion, D0, 96, 99, 103, 115,
133\
for the, method of least squares, 303

'i‘%’g ical integration, 386, 391, 303,
f6r the Runge-Kutta method, 381, 400
for the solution of equations, 207, 222
for the solution of equations, by Gauss,

267, 270, 272

Cartesian charis, 33
coordinates, 396

Cauchy difference method, 377

Center of mass, 157, 201

Check on accuraey of slide rule acales, 16

Chenevier tables, 36

Compensation planimeter, 195

Complex roots,
251
mechanical determination of, 249
aumerical determination of, 208, 210,
244, 257, 262 N
Constant storage mechanism (C3M I NGD
Convergence of intorpolation serics, * 102,
110, 120 N
of iteration processes, 210,{212
of the method of stepwise“ipproxima-
tion, 387, 392, 407 £™
of Nowton's methodp2th, 224

graphic determination of,

Correction, 1 ‘&4
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in, the\%apezoid rule, 166

in tEe\Weddle formuls, 168
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) Decay processes, 356

Descartes” rile of signs, 238
Determinants, ealeulation of, 271
Difforence eguations, adjeint, 288
‘graphical solution of, 291
homogencous, 286
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linear, 285
Difference schemes, cheek on, 99
error propagation in, 100
general, 90, 96, 131
apecial, 99, 103, 243
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divided, 83
partial divided, 133
Differential curve, 158
Differential equations,
of higher order, 394
simultaneous linear, 397
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numerical, ;11’3 vions, 115
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D;S.‘Ot lincar mtergglat.wn in tables and
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Direction lines, pencil of, 148, 365
Direction ruler of von Sanden, 338
Directrix, 365
Diserizninant curve, 34

of first order, 364
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Disk planimeter, 198 ]
Distances between scale markings, §
Divided differences, 76, 83, 86

with repeated argument, 114
Division, line of, 292

Elimination of one unknown, graphical,

nurnerical, 265
Empirical functions, analysis of, 206
Equation machines, 235, 249, 285
Equation system, reduced, 266, 275
ctrie, 271, 289, 309 ]
Equidistant funetion values, tables with,
137
Error, absolate, 1, 230, 271
of caleulation, 210
of data, 1, 20
in difference schemes, 100
equstions for, 298, 302, 358, 362
estimation in integral formulas, 1686,
175, 180, 183, 189
interpolation, 24, 110
in iteration methods, 393
mean square, 297, 317, 321, 327, 336,
358, 362

percentage, 1, 230, 273 AN
propagation in difference schemes, 10
relative, 1, 230 R
rounding off, I, 27, 101 3
total, 29 ~

Euler formuls, 162

wn\
+& )
False position, method Ki\%é, 207, 209,
219, 253 \
Finely divided scales{ O)
Fournier analysis, 325,™
Functional seales) 9, 12, 22, 33, 36, 154,
201, 304,
Fuudamenttbk theorem of algebra, 246

Gsu.ss.in%rpolat.ion fermaula, 105, 138
Gautislogarithms, 30, 232, 261, 260

Gauss scheme for the solution of linear
W equations, 267, 269, 277

Gonella integrating mechsnism, 198
Graeffe’s method, 258

Harmonic analyzer, 331
Harriott’s rule of signs, 238
Horner’s method, 75, 92, 98, 228, 239, 240,
257, 262
more general form of, 76, 82, 08

Improvement of approximation values.
205, 200, 290, 387, 406
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Inaccuracy of roots of equations, 230, 271
in readinga, 11
Index lincs, 41
Inertia, moment of, 157, 202 °®
produet of, 203
Instantaneous values from mean values,
119
Integral curves, 146
of differential equations, 364, 389, 395
higher order, 155 A~
Integrele, multiple, 128, 155
Integrating wheel, 104 A
Integration base, 146, 151, 3908 N
Integration of differential equations, 364
of empirieal funetions, 189
graphical, 146 P!
numerieal, 120, 397"
Integration formulag of Adams, 128, 383,
T 401, 402 NN\
of Bessel\119y7122, 143, 360, 408
for the double interval, 183
of Euler, 163
of MadLanrin, 165
fot ‘multiple integrals, 128
¢of Newton, 125, 383, 402
for odd ordinates, 163

3 “of Stirling, 119, 124, 144

for volume integrala, 144
Integration mechanism of Gouvella, 198
Integration pole, 148
Integration triangle, 148
Integraiors, 148, 153, 4k1, 413
Intermediate values, 113
Interpolation error, 24, 110
Interpolation, direet, in tables, 24, 27

inverse, in tables, 25, 28

linear, 23, 206 -

with several variables, 130
Interpolation formulas, of Bessel, 65, 107,

139, 162

of Gauss, 105, 138

general, 83, 131

of Lagrange, 83, 171, 184

of Laplace, 109

of Newton, 102, 108, 116, 137, 243, 317

special, 96

of Sticling, 106, 119, 138, 162
Interpolation parabola, 90, 93, 171
Interval widths in differentiation, 120

in graphical integration, 150
Igoclines, 364
Iteration, 22, 205, 209, 200, 385, 406

Jacobi's formula, 158, 186, 319
Junction points, 280, 292

Kepler's barrel rule, 125, 144, 175
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Lagrange interpolation formula, 88, 171,
184

Lalanne tables, 37

Laplace’s formula, 109

Least squares, method of, 2, 213, 265, 269,
207, 320, 358

chPndre polynomials, 187, 243, 319, 323

Lill’s method, 79, 94, 231, 251
Limit of aceuracy, 22
Line of division, 292
Linear cquations, 215, 265

form, 260

functions, 300

planimeter, 191, 199
Load numbers, 273
Logarithmic gra.‘phs, 233

papers, 12

scales, 11, 14, 24

tables, 24

MacELsurin’s formulas, 1685, 177, 189
Mader snalyzer, 331
Mapping, affine, 207
conformal, 208, 253
Mean abscissa, 149
ordinate, 147, 149

crror, 2, 207, 310, 817, 324, 327, 358, 362,

va.lue mei‘.hods 171 o5
Measurement error, 9 N

Messurements, their practical exceutmn, 6

Measuring wheel, 161
Method of least squares, 2, 213, 265 289,
297, 320, 368
’\{oment planlInLtLi‘ 204, 4
Moments of higher urdb({\IEB 186
statie, 156, 201
of inertia, la? 2{)2 }
Multiple mt.egrals‘ 128, 155

) 3

Newtdn's apbmx;ma.tmn method, 205,
293,°227, 257, 264
im;e%\furmula 121, 383, 402
interpolation formula, general, 87, 133
idterpolation formnla, special, 102, 103,

~'\ 116, 137, 243, 517
7N\ Smean valuc formulas 167, 173

N\ _ANomograms, 32

ray, 36
Normal equations, 208, 301, 304, 308, 312,
817, 320, 326, 335, 358 359 381
KNormal va.lues of :1umberﬂ, 260
Null polygon, 293
Numerical integration, 120, 397

Observation error, 296
Operators, 375, 397
Ordinate, mean, 147, 148

Orthogonal functions, 317, 326

Parabolas for interpolation, 90

Parallel coordinates, 280

Particular sulutlons of difiercntial equa-~

tions, 364

Percentage crror, 1, 230, 273

Period, determination of, 358, 360

Periodic functions, 325

Planimeter, 191 ™\
compensation, 195
digk, 198 2
equation for, 194, 107 ¢\
hatchet, 200 N\
linear, 191, 199 L >
polar, 191, 105 P
spherical wheel, :

Planimeter constang, /197, 199, 200

Polar planimeten, 191, 195

Power series of sfunction, graphical devel-

opmerit, 153, 229

numg Ldevelopment %0

Po sums, 185

Prmm al values, 118

Product development of & function, graph-
7 ieal, 50, 51
nu.merical, 76, 80

Product register (PR), 46, 49

Projection acales, 12, 33

Quadralin equations, 20
Quadratin interpolation, 96

Ray curve, 368
nomograms, 36
point, 370
Reading confrivances, 33
Real part of complex roots, 35, 43 248
Real roots of an equation, 227, 238
Reeiprocal equation, 360
Recursion formulas, 286
Relative error, 1, 230
Roots of rational integral eguations, 227
of spherical harmonics, 187, 243
Roundivg off error, 1, 27, 101
Rule of Budz.n—Fcuncr, 2306
Runge-Eutta formulas, 377, 397, 300

Seale of 3 graphical representation, 8
Seale modulus, 23, 39 51
of integral curves, 1
Soales, 8, 12, 22, 33, 36, 154, 201, 304
binary, 41, 4:4
curved, 42
logarithmie, 10, 14, 24, 37, 39, 305
power, 12, 33, 2301
projeetion, 12, 33
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